ANHANG B VO (EU) 2015/1861
ERLÄUTERUNG DER GÜTER DER TRIGGERLISTE
(wie in Anhang A Abschnitt 2 „MATERIALIEN UND AUSRÜSTUNG” beschrieben)
-
1.
-
Kernreaktoren und besonders dafür konstruierte oder angefertigte Ausrüstung und Bestandteile
EINLEITUNG
Die verschiedenen Arten der Kernreaktoren können durch den verwendeten Moderator (z. B. Grafit, Schweres Wasser, Leichtes Wasser, nichts), das Spektrum der Neutronen im Reaktor (z.B. thermisch, schnell), das verwendete Kühlmittel (z. B. Wasser, flüssiges Metall, geschmolzenes Salz, Gas) oder durch ihre Funktion oder ihren Typ (z.B. Kernreaktoren zur Stromerzeugung, Forschungsreaktoren, Testreaktoren) charakterisiert werden. Alle diese Typen von Kernreaktoren fallen unter diesen Eintrag und seine Unterkategorien, nicht aber Fusionsreaktoren.
-
1.1.
-
Vollständige Kernreaktoren
Kernreaktoren, geeignet für den Betrieb mit einer kontrollierten, sich selbst erhaltenden Kernspaltungs-Kettenreaktion.ANMERKUNG
Ein „Kernreaktor” umfasst im wesentlichen alle Bauteile im Inneren des Reaktorbehälters oder die mit dem Reaktorbehälter direkt verbundenen Bauteile, die Einrichtungen für die Steuerung des Leistungspegels des Reaktorkerns und die Bestandteile, die üblicherweise das Primärkühlmittel des Reaktorkerns enthalten und damit in unmittelbaren Kontakt kommen oder es steuern.
AUSFUHREN
Die Ausfuhr einer kompletten Anlage in diesen Grenzen erfolgt nur nach den Verfahren der Leitlinien. Diese einzelnen Güter in diesen funktionell definierten Grenzen werden nur in Übereinstimmung mit den Verfahren der Leitlinien unter 1.2. bis 1.11. ausgeführt. Die Regierung behält sich das Recht vor, die Verfahren der Leitlinien auf andere Güter innerhalb dieser funktionell definierten Grenzen anzuwenden.- 1.2.
- Reaktorbehälter
Metallbehälter oder wichtige vorgefertigte Teile hierfür, besonders konstruiert oder hergerichtet zur Aufnahme des Kerns eines Kernreaktors wie unter 1.1 beschrieben, einschließlich relevanter Reaktoreinbauten, wie in 1.8 beschrieben.ANMERKUNG
Die Position 1.2 beinhaltet Reaktorbehälter ungeachtet der Druckverhältnisse und schließt Reaktordruckbehälter und Druckröhrenreaktoren ein. Der Deckel des Reaktorbehälters ist ebenfalls von Position 1.2 als ein wichtiges vorgefertigtes Teil eines Reaktorbehälters erfasst.
- 1.3.
- Bedienungseinrichtungen zum Be- und Entladen von Kernbrennstoff
Bedienungseinrichtungen, besonders konstruiert oder hergerichtet für das Be- oder Entladen von Kernbrennstoff in einem Kernreaktor wie unter 1.1. beschrieben.ANMERKUNG
Die oben erwähnten Güter sind in der Lage, unter Last zu beladen, eine technisch anspruchsvolle Positionierung durchzuführen, oder besitzen die Möglichkeit, komplexe Entladungsvorgänge ohne direkten Blickkontakt oder direkten Zugang zu den Brennelementen vorzunehmen.
- 1.4.
- Steuerstäbe und Ausrüstung
Steuerstäbe, Trage- oder Aufhängevorrichtungen hierfür, Steuerstabantriebe und Stabführungsrohre, besonders konstruiert oder hergerichtet für die Steuerung der Spaltprozesse in einem Kernreaktor wie unter 1.1. beschrieben.- 1.5.
- Kernreaktor-Druckrohre
Druckrohre, speziell ausgelegt oder angefertigt für die Aufnahme sowohl der Brennelemente als auch des Primärkühlmittels in einem Kernreaktor wie unter 1.1. beschrieben.ANMERKUNG
Die Druckrohre sind Teil der Brennelementkanäle für einen Betrieb unter erhöhtem Druck, manchmal von mehr als 5 MPa.
- 1.6.
- Kernbrennstoffhüllen
Rohre (oder Rohrsysteme) aus Zirkoniummetall oder -legierungen, besonders konstruiert oder hergerichtet zur Verwendung als Hüllrohre in einem Kernreaktor, wie unter 1.1. beschrieben, und in Mengen von mehr als 10 kg.- NB:
- Für Zirkoniumdruckrohre siehe 1.5., für Kalandriarohre siehe 1.8.
ANMERKUNG
Rohre oder Rohrsysteme aus Zirkoniummetall oder -legierungen zur Verwendung in einem Kernreaktor bestehen aus Zirkonium mit einem Gewichtsanteil an Hafnium kleiner als 2000 ppm bezogen auf den Zirkoniumanteil.
- 1.7.
- Primärkühlmittelpumpen oder Kompressoren
Pumpen oder Kompressoren, besonders konstruiert oder hergerichtet für den Kreislauf des Primärkühlmittels von Kernreaktoren wie unter 1.1. beschrieben.ANMERKUNG
Besonders konstruierte oder hergerichtete Pumpen oder Kompressoren schließen Pumpen für wassergekühlte Reaktoren, Umwälzpumpen für gasgekühlte Reaktoren und elektromagnetische und mechanische Pumpen für flüssigmetall-gekühlte Reaktoren ein. Diese Ausrüstung kann Folgendes umfassen: Pumpen mit komplexen Dichtungs- oder Mehrfachdichtungssystemen zur Verhütung von Primärkühlwasserleckagen, sowie gekapselte Pumpen und Pumpen mit Intertialmassesystemen. Diese Begriffsbestimmung umfasst Pumpen, die nach Section III, Division I, Subsection. NB (Klasse 1-Komponenten) der American Society of Mechanical Engineers (ASME-Code) oder gleichwertigen Normen zertifiziert sind.
- 1.8.
- Innere Einbauten eines Kernreaktors
„Innere Einbauten eines Kernreaktors” , besonders konstruiert oder hergerichtet für die Verwendung in einem Kernreaktor wie unter 1.1. beschrieben, dazu gehörten z.B., Trägerkonstruktionen für den Reaktorkern, Brennelementkanäle, Kalandriarohre, thermische Abschirmungen, Leitbleche sowie Kerngitter- und Strömungsplatten.ANMERKUNG
„Innere Einbauten eines Kernreaktors” sind Hauptstrukturen innerhalb des Reaktorbehälters mit einer oder mehreren Aufgaben, wie z.B. Stützfunktion für den Kern, Aufrechterhaltung der Brennstoff-Anordnung, Führung des Primärkühlmittelflusses, Bereitstellung von Strahlungsabschirmungen für den Reaktorbehälter und Steuerung der Innenkern-Instrumentierung.
- 1.9.
- Wärmetauscher
- a)
- Dampfgeneratoren, besonders konstruiert oder hergerichtet für die Verwendung im Primär- oder Zwischenkühlmittel-Kreislauf eines Kernreaktors wie unter 1.1. beschrieben.
- b)
- Andere Wärmetauscher, besonders konstruiert oder hergerichtet für die Verwendung im Primärkühlmittel-Kreislauf eines Kernreaktors wie unter 1.1. beschrieben.
ANMERKUNG
Dampferzeuger sind besonders konstruiert oder hergerichtet, um die Reaktorwärme zum Speisewasser zur Erzeugung von Dampf zu transportieren. Im Falle eines schnellen Brüters, in dem ein Zwischenkühlkreislauf erforderlich ist, befindet sich der Dampfgenerator im Zwischenkühlkreislauf.
In einem gasgekühlten Reaktor kann sich der Wärmetauscher in einem zweiten Gaskreislauf befinden, der die Wärme an die Gasturbine überträgt.
Der Umfang der Kontrolle für diesen Eintrag schließt keine Wärmetauscher für unterstützende Systeme des Reaktors, wie z.B. Notfallkühlsysteme oder Nachwärmekühlsysteme, ein.
- 1.10.
- Neutronendetektoren
Neutronendetektoren, besonders konstruiert oder angefertigt für die Bestimmung von Neutronenflusshöhen innerhalb des Kerns eines Kernreaktors wie unter 1.1. beschrieben.ANMERKUNG
Dieser Eintrag gilt für Detektoren innerhalb und außerhalb des Kerns, die einen breiten Bereich der Neutronenflusshöhen, typischerweise zwischen 104 bis 1010 Neutronen/(cm2/s) oder größer, messen. Außerhalb des Kerns bezieht sich auf die Instrumente außerhalb des Reaktorkerns wie unter 1.1. beschrieben, aber innerhalb der biologischen Abschirmung.
- 1.11.
- Externe thermische Abschirmungen
„Externe thermische Abschirmungen” , besonders konstruiert oder angefertigt für die Verwendung in einem Kernreaktor wie unter 1.1. beschrieben, zwecks Reduzierung des Wärmeverlusts sowie als Sicherheitshülle für den Reaktorbehälter.ANMERKUNG
„Externe thermische Abschirmungen” sind Hauptstrukturen, die am Reaktorbehälter angebracht sind, um den Wärmeverlust des Reaktors und die Temperatur in der Sicherheitshülle zu reduzieren.
- 2.
- Nicht-nukleare Materialien für den Kernreaktor
- 2.1.
- Deuterium und Schweres Wasser
Deuterium, Schweres Wasser (Deuteriumoxid) und andere Deuteriumverbindungen, in denen das Isotopenverhältnis von Deuterium zu Wasserstoff größer als 1: 5000 ist, für die Verwendung in einem Kernreaktor wie unter 1.1. beschrieben, in Mengen größer als 200 kg Deuterium für einen Empfänger in einem Zeitraum von 12 Monaten.- 2.2.
- Nuklearreiner Grafit
Grafit mit einem Boräquivalent kleiner als 5 ppm und einer Dichte größer als 1,5 g/cm3 für die Verwendung in einem Kernreaktor wie unter 1.1. beschrieben, in Mengen von mehr als 1 kg.ANMERKUNG
Zum Zweck der Exportkontrolle entscheidet die Regierung, ob die Ausfuhren von Grafit mit den genannten Spezifikationen für Kernreaktoren bestimmt sind.
Das Boräquivalent (BÄ) wird experimentell bestimmt oder als Summe der BÄZ für Verunreinigungen (ausgenommen BÄKohlenstoff, da Kohlenstoff nicht als Verunreinigung angesehen wird) einschließlich Bor berechnet, wobei Folgendes gilt:
BÄZ (ppm) = UF × Konzentration des Elementes Z in ppm;
mit UF als Umrechnungsfaktor: (σz × AB)/(σB × Az);
dabei bedeuten:
σB (sigma B) und σz (sigma Z) die Wirkungsquerschnitte (in barn) für die Absorption thermischer Neutronen für Bor und
das Element Z; AB und Az die Atomgewichte der natürlich vorkommenden Elemente Bor und Z.
- 3.
- Anlagen für die Wiederaufarbeitung bestrahlter Kernreaktor-Brennelemente sowie besonders hierfür konstruierte oder hergerichtete Ausrüstung
EINLEITUNG
Die Aufarbeitung von bestrahlten Brennelementen dient der Trennung von Plutonium und Uran von hochradioaktiven Spaltprodukten und anderen Transuranen. Diese Trennung erreicht man mit verschiedenen technischen Verfahren. Doch im Laufe der Jahre hat sich das PUREX-Verfahren als das am häufigsten verwendete etabliert. PUREX beinhaltet die Auflösung von bestrahlten Kernbrennstoffen in Salpetersäure, gefolgt von der Trennung des Urans, des Plutoniums und Spaltprodukten durch eine Lösemittelextraktion unter Verwendung einer Mischung aus Tributylphosphat mit einem organischen Verdünnungsmittel.
PUREX-Einrichtungen haben miteinander vergleichbare Prozessfunktionen, dazu gehören die Zerkleinerung der bestrahlten Brennelemente, die Auflösung der Brennelemente, die Lösungsmittelextraktion und die Lagerung der Prozessflüssigkeiten. Es können auch Ausrüstung für die thermische Denitrierung des Urannitrats, für die Umwandlung des Plutoniumnitrats in Oxid oder Metall und für die Überführung der flüssigen Spaltproduktlaugen in geeigneter Form zur langfristigen Lagerung und Entsorgung vorhanden sein. Jedoch können die spezifische Ausführung und die Konfiguration der Ausrüstung dieser Funktionen zwischen den einzelnen PUREX-Anlagen aus verschiedenen Gründen — darunter Art und Menge der Aufbereitung von bestrahlten Kernbrennstoffen, beabsichtigte Bestimmung der wiedergewonnenen Materialien, Systematik der Sicherheit und Instandhaltung der Anlage — abweichen.
„Anlagen für die Wiederaufarbeitung von bestrahlten Kernreaktor-Brennelementen” beinhalten Ausrüstung und Bestandteile, die üblicherweise mit dem bestrahlten Kernbrennstoff, den Hauptkernmaterialien und den Spaltprodukten der Prozessströme in direkten Kontakt kommen oder diese direkt steuern.
Diese Prozesse, einschließlich der kompletten Systeme für die Umwandlung von Plutonium und die Herstellung von Plutoniummetall, können durch Maßnahmen zur Vermeidung von Kritikalität (z. B. Geometrie), Strahlenexposition (z. B. Abschirmung) und Toxizität (z. B. durch Einhausung) identifiziert werden.
AUSFUHREN
Die Ausfuhr einer kompletten Anlage in diesen Grenzen erfolgt nur nach den Verfahren der Leitlinien. Die Regierung behält sich das Recht vor, die Verfahren der Leitlinien auf andere Güter innerhalb dieser funktionell definierten Grenzen, wie unten aufgeführt, anzuwenden. Zu den Gütern, die unter die Bedeutung des Ausdrucks „und Ausrüstung besonders konstruiert und hergerichtet” für die Wiederaufarbeitung von bestrahlten Brennelementen fallen, gehören:- 3.1.
- Brennelementzerhacker oder -Schreddermaschinen
Fernbediente Ausrüstung, besonders konstruiert oder hergerichtet zur Verwendung in einer Wiederaufarbeitungsanlage, wie vorstehend beschrieben, zum Zerschneiden, Zerhacken, Schreddern oder Abscheren von bestrahlten Kernreaktor-Brennelementen, -stäben oder -stabbündeln.ANMERKUNG
Diese Ausrüstung bricht die Brennelementhüllrohre auf, um den bestrahlten Kernbrennstoff zum Auflösen freizulegen. Besonders konstruierte oder hergerichtete Metallscheren werden am häufigsten eingesetzt, aber auch modernere Ausrüstungen, wie Laser, kommen zum Einsatz.
- 3.2.
- Auflösetanks
Kritikalitätssichere Tanks (z.B. mit kleinem Durchmesser, ring- oder plattenförmige Tanks), besonders konstruiert oder hergerichtet zur Verwendung in einer Wiederaufarbeitungsanlage wie oben beschrieben, zum Auflösen bestrahlter Kernbrennstoffe, beständig gegen heiße, hochkorrosive Flüssigkeiten und geeignet, fernbedient befüllt und gewartet zu werden.ANMERKUNG
Auflösetanks enthalten in der Regel die zerhackten Brennelemente. In diesen kritikalitätssicheren Tanks wird der bestrahlte Kernbrennstoff in Salpetersäure gelöst und werden die übrig gebliebenen Hüllrohre aus dem Prozessstrom entfernt.
- 3.3.
- Lösungsextraktoren und Ausrüstung für die Lösemittelextraktion
Lösungsextraktoren wie Füllkörper- oder Pulsationskolonnen, Mischabsetzer oder Zentrifugalextraktoren, besonders konstruiert oder hergerichtet zur Verwendung in einer Wiederaufarbeitungsanlage. Lösungsextraktoren müssen gegen die ätzende Wirkung von Salpetersäure beständig sein. Diese werden üblicherweise nach äußerst hohen Standards (einschließlich besonderer Schweißverfahren sowie Prüfungen, Qualitätssicherung und Qualitätskontrollen) aus kohlenstoffarmen, nichtrostenden Metallen wie Stahl, Titan, Zirkonium oder anderen hochwertigen Metallen gefertigt.ANMERKUNG
Lösungsextraktoren beinhalten beides, die Lösung der bestrahlten Brennelemente aus den Auflösetanks sowie organische Lösungen zur Trennung von Uran, Plutonium und der Spaltprodukte. Die Ausrüstung solcher Extraktoren wird nach strengen Betriebsparametern — darunter lange Lebensdauer ohne Wartungsbedarf oder leichte Austauschbarkeit, einfache Bedienung und Kontrolle und Flexibilität bei Schwankungen der verfahrenstechnischen Bedingungen — gefertigt.
- 3.4.
- Aufbewahrungs- oder Lagerbehälter für Chemikalien
Aufbewahrungs- oder Lagerbehälter, besonders konstruiert oder hergerichtet zur Verwendung in einer Wiederaufarbeitungsanlage. Die Aufbewahrungs- oder Lagerbehälter müssen gegen die ätzende Wirkung von Salpetersäure beständig sein. Diese werden aus kohlenstoffarmen, nichtrostenden Metallen wie Stahl, Titan, Zirkonium oder anderen hochwertigen Metallen gefertigt. Aufbewahrungs- oder Lagerbehälter können für Fernbedienung bei Betrieb und Wartung ausgelegt sein und die folgenden Funktionen für die Kontrolle der nuklearen Kritikalität haben:- 1)
- Wände oder innere Strukturen mit einem Bor-Äquivalent von mindestens 2 Gew.- % oder
- 2)
- einen maximalen Durchmesser von 175 mm bei zylindrischen Behältern oder
- 3)
- eine maximale Breite von 75 mm bei platten- oder ringförmigen Behältern.
ANMERKUNG
Drei wesentliche Ströme der Prozessflüssigkeit ergeben sich aus der Extraktion. Aufbewahrungs- oder Lagerbehälter werden in der weiteren Verarbeitung aller drei Ströme wie folgt verwendet:
- a)
- die reine Urannitratlösung wird durch Verdampfung aufkonzentriert und einem Denitrierungsprozess unterzogen, wobei das Uran oxidiert wird. Das Oxid wird dem nuklearen Brennstoffkreislauf zugeführt.
- b)
- Die hochradioaktive Spaltproduktlösung wird normalerweise durch Verdampfung konzentriert und als flüssiges Konzentrat gelagert. Diese Lösung wird weiter konzentriert und in eine geeignete Form zur Lagerung oder Entsorgung überführt.
- c)
- Die reine Plutoniumnitratlösung wird aufkonzentriert und bis zur Weiterleitung in die nächsten Prozessschritte gelagert. Insbesondere sind Aufbewahrungs- oder Lagerbehälter für Plutoniumlösungen so konzipiert, dass sie Kritikalitätsprobleme auf Grund von Veränderungen in Konzentration und Form dieser Lösungen vermeiden.
- 3.5.
- Neutronenmesssysteme zur Prozesssteuerung
Neutronenmesssysteme, besonders konstruiert oder hergerichtet für die Integration und den Einsatz in automatischen Prozessleitsystemen einer Wiederaufarbeitungsanlage.ANMERKUNG
Diese Systeme können die aktive und passive Neutronenmessung sowie die Bestimmung der Menge und Zusammensetzung des spaltbaren Materials umfassen. Das komplette System besteht aus einem Neutronen-Generator, einem Neutronendetektor, Verstärkern und Signalverarbeitungselektronik.
Der Zweck dieser Kontrollen umfasst nicht Neutronendetektion und Messinstrumente, die für Kernmaterialbuchführung und Sicherungsmaßnahmen oder eine andere Anwendung ausgelegt sind, die nicht mit der Integration und den Einsatz in automatischen Prozessleitsystemen einer Wiederaufarbeitungsanlage von bestrahlten Brennelementen in Verbindung stehen.
- 4.
- Anlagen für die Herstellung von Kernreaktor-Brennelementen, und besonders hierfür konstruierte oder hergerichtete Ausrüstung
EINLEITUNG
Brennelemente werden aus einem oder mehreren der im Anhang unter MATERIALIEN UND AUSRÜSTUNG genannten Ausgangs- oder besonderen spaltbarem Materialien gefertigt. Für oxydische Kernbrennstoffe, die häufigste Art des Brennstoffs, wird Ausrüstung für das Pressen von Pellets, das Sintern, das Schleifen und das Polieren verwendet. Mischoxidbrennstoffe werden in Handschuhfächern (oder gleichwertigen Einkapselungen) behandelt, bis sie in den Hüllrohren versiegelt sind. In allen Fällen wird der Brennstoff hermetisch in einer geeigneten Ummantelung eingeschlossen, die als primäre Hülle des Brennstoffes konzipiert ist, um Effizienz und Sicherheit beim Reaktorbetrieb zu gewährleisten. Ebenso ist in allen Fällen eine präzise Steuerung der Prozesse, der Verfahren und der Anlagen auf einem extrem hohen Standard notwendig, um eine berechenbare und sichere Abbrandleistung zu gewährleisten.
ANMERKUNG
Ausrüstungsgegenstände, die unter die Bedeutung des Ausdrucks „Ausrüstung, besonders konstruiert oder angefertigt” für die Herstellung von Brennelementen, fallen, sind u.a. solche, die
- a)
- üblicherweise mit dem Kernmaterial im Produktionsfluss in unmittelbaren Kontakt kommen oder seiner Bearbeitung dienen oder den Produktionsfluss steuern;
- b)
- das Kernmaterial innerhalb der Umhüllung verschließen;
- c)
- der Prüfung der Unversehrtheit der Umhüllung oder des Verschlusses dienen;
- d)
- der Prüfung der Endbehandlung des umschlossenen Brennstoffs dienen oder
- e)
- für die Montage der Brennelemente verwendet werden.
Solche Ausrüstungsgegenstände oder -systeme können z.B. sein:
- 1)
- vollautomatische Pellet-Prüfstationen, besonders konstruiert oder angefertigt für die Überprüfung der Abmessungen und Oberflächenfehler der Brennstoff-Pellets;
- 2)
- automatische Schweißanlagen, besonders konstruiert oder angefertigt für das Schweißen der Endkappen auf die Brennelementstäbe (oder -stangen);
- 3)
- automatische Test- und Prüfstationen, besonders konstruiert oder angefertigt für die Überprüfung der Dichtheit der versiegelten Brennstäbe (oder -stangen);
- 4)
- Systeme, besonders konstruiert oder angefertigt zur Fertigung von Kernbrennstoffhüllen.
Unter 3 fällt typischerweise Ausrüstung für: a) Röntgenuntersuchungen der Schweißnähte an den Endkappen der Stäbe (oder Stangen), b) Helium-Lecksuche der unter Druck stehenden Stäbe (oder Stangen), und c) Gammastrahlen-Messungen an den Stäben (oder Stangen), um die korrekte Beladung der Brennstoff-Pellets im Inneren zu prüfen.
- 5.
- Anlagen für die Isotopentrennung von natürlichem Uran, abgereichertem Uran und besonderem spaltbaren Material sowie besonders hierfür konstruierte oder hergerichtete Ausrüstung mit Ausnahme analytischer Instrumente
EINLEITUNG
Anlagen, Ausrüstung und Technologie für die Isotopentrennung von Uranisotopen haben in den meisten Fällen eine große Ähnlichkeit mit Anlagen, Ausrüstung und Technologie für die Isotopentrennung von „anderen Elementen” . In einigen Fällen können die Anlagen und Ausrüstung für die Isotopentrennung von „anderen Elementen” unter die Kontrolle nach diesem Abschnitt fallen. Die Kontrolle der Anlagen und Ausrüstung für die Isotopentrennung von „anderen Elementen” sind komplementär zu den Kontrollen der Anlagen und Ausrüstung, besonders konstruiert oder hergerichtet für die Verarbeitung, die Verwendung oder Herstellung von besonders spaltbarem Material der Trigger-Liste. Diese komplementären Kontrollen nach Abschnitt 5 für eine „andere Elemente” einschließende Verwendung gelten nicht für die elektromagnetische Isotopentrennung, die unter Teil 2 der Leitlinien beschrieben wird.
Prozesse, für die die Kontrollen in Abschnitt 5 gleichermaßen gelten, egal ob die beabsichtigte Verwendung die Isotopentrennung von Uran oder von „anderen Elementen” ist, sind: die Gaszentrifuge, die Gasdiffusion, das Plasma-Trennverfahren und aerodynamische Prozesse.
Für einige Verfahren hängt die Beziehung zur Uranisotopentrennung vom zu trennenden Element ab. Diese Prozesse sind: Laser-basierte Prozesse (z. B. Isotopentrennung nach dem molekularen Laserverfahren oder nach dem atomaren Laserverfahren), chemischer Austausch und Ionenaustausch. Die Lieferländer müssen daher diese Prozesse von Fall zu Fall analog zu den Kontrollen, die in Abschnitt 5 für eine „andere Elemente” einschließende Verwendung vorgesehen sind, bewerten.
Ausrüstungsgegenstände, die unter die Bedeutung des Ausdrucks „besonders hierfür konstruierte oder angefertigte Ausrüstung mit Ausnahme analytischer Instrumente” fallen, sind u.a.:- 5.1.
- Gaszentrifugen sowie Zentrifugensysteme und Bestandteile, besonders konstruiert oder hergerichtet für die Verwendung in Gaszentrifugen
EINLEITUNG
Die Gaszentrifuge besteht aus einem oder mehreren, in einem Vakuum eingeschlossenen dünnwandigen Zylinder(n) mit einem Durchmesser zwischen 75 mm und 650 mm, der/die sich bei einer hohen Umfangsgeschwindigkeit von 300 m/s oder mehr um seine/ihre vertikale Mittelachse dreht/drehen. Um diese hohe Geschwindigkeit zu erreichen, müssen die Konstruktionsmaterialien der rotierenden Bestandteile eine hohe Festigkeit haben und die Rotoranordnung, sowie auch deren einzelne Bestandteile, in engen Toleranzgrenzen gefertigt werden, um Umwuchten zu minimieren. Im Gegensatz zu anderen Zentrifugen ist die Gaszentrifuge zur Urananreicherung durch Leitblech(e) innerhalb der Rotorrohre und Entnahmevorrichtungen für die Zuführung und Entnahme von UF6-Gas, bestehend aus mindestens 3 getrennten Röhrchen, von denen 2 schaufelartig von der Rotorachse zur Peripherie der Rotorkammer verlängert sind, charakterisiert. Ebenfalls im Vakuum befindet sich eine Reihe von kritischen Elementen, die nicht rotieren und die — obwohl besonders konstruiert — weder schwierig herzustellen noch aus besonderen Materialien hergestellt sind. Eine Zentrifugenanlage erfordert jedoch eine große Anzahl dieser Komponenten, so dass die Anzahl einen wichtigen Hinweis auf den Verwendungszweck geben kann.
- 5.1.1.
- Rotierende Bestandteile
- a)
- Vollständige Rotorsysteme:
Dünnwandige Zylinder oder eine Anzahl von miteinander verbundenen dünnwandigen Zylindern, hergestellt aus einem oder mehreren hochfesten Materialien, wie in der ANMERKUNG zu diesem Abschnitt beschrieben. Im Falle von miteinander verbundenen Zylindern besteht die Verbindung aus flexiblen Ringen oder Sickenbändern, wie unter 5.1.1.c beschrieben. Der zusammengebaute Rotor ist mit internen Leitblechen und Deckeln, wie unter 5.1.1. Buchstaben d und e beschrieben, ausgerüstet. Jedoch können die vollständigen Rotorsysteme auch teilweise vormontiert geliefert werden.
- b)
- Rotorrohre:
Dünnwandige Zylinder, besonders konstruiert oder hergerichtet zur Verwendung in Gaszentrifugen mit einer Wandstärke kleiner/gleich 12 mm, einem Durchmesser zwischen 75 mm und 650mm,gefertigt aus hochfesten Materialien, beschrieben in der ANMERKUNG zu diesem Abschnitt.
- c)
- Ringe oder Sickenbänder:
Bestandteile, besonders konstruiert oder angefertigt für die Verstärkung oder Verbindung der Rotorteile untereinander. Die Ringe sind kurze Zylinder mit einer Wandstärke kleiner/gleich 3 mm und einem Durchmesser zwischen 75 mm und 650 mm mit einer Sicke, hergestellt aus hochfesten Materialien, wie in der ANMERKUNG zu diesem Abschnitt beschrieben.
- d)
- Leitbleche:
Scheibenförmige Bestandteile mit einem Durchmesser zwischen 75 mm und 650 mm, besonders konstruiert oder angefertigt zur Montage innerhalb der Rotorrohre, um die Entnahmekammer von der Hauptseparationskammer zu trennen und in einigen Fällen, um die Zirkulation des UF6-Gases in der Hauptseparationskammer des Rotorrohres zu unterstützen, hergestellt aus hochfesten Materialien, wie in der ANMERKUNG zu diesem Abschnitt beschrieben.
- e)
- Obere und untere Deckel:
Scheibenförmige Bestandteile mit einem Durchmesser zwischen 75 mm und 650 mm, besonders konstruiert oder angefertigt als Rotorrohrenden, um das UF6-Gas im Rotor abzuschirmen und in einigen Fällen, um als integrierter Teil des oberen Lagers diese zu unterstützen, zu sichern oder aufzunehmen, oder um die rotierenden Elemente des Motors und des unteren Lagers zu tragen, hergestellt aus hochfesten Materialien, wie in der ANMERKUNG zu diesem Abschnitt beschrieben.
ANMERKUNG
Zu den Materialien, die für die Herstellung von rotierenden Zentrifugenbestandteilen verwendet werden, zählen:
- a)
- martensitaushärtender Stahl (maraging steel) mit einer erreichbaren Zugfestigkeit größer/gleich 1,95 GPa;
- b)
- Aluminiumlegierungen mit einer erreichbaren Zugfestigkeit größer/gleich 0,46 GPa;
- c)
- faser- oder fadenförmige Materialien zur Verwendung in Kompositstrukturen mit einem spezifischen Modul größer/gleich als 3,18 × 106 m und einer spezifischen Zugfestigkeit größer/gleich als 7,62 × 104 m (der spezifische Modul ist der Young'sche Modul in N/m2 dividiert durch das spezifische Gewicht in N/m3; die spezifische Zugfestigkeit ist die Zugfestigkeit in N/m2 dividiert durch das spezifische Gewicht in N/m3).
- 5.1.2.
- Statische Bestandteile
- a)
- magnetisch aufgehängte Lager:
- 1.
- Lagerbaugruppen, besonders konstruiert oder hergerichtet zur Verwendung in Gaszentrifugen, bestehend aus einem Ringmagneten, der innerhalb eines Gehäuses mit Dämpfungsmedium aufgehängt ist. Das Gehäuse ist aus UF6-resistenten Werkstoffen (siehe ANMERKUNG in Abschnitt 5.2.) hergestellt. Der Magnet ist mit einem am Rotordeckel (siehe Abschnitt 5.1.1.e) montierten Polstück oder einem zweiten Magneten gekoppelt. Der Magnet kann ringförmig sein, mit einem Verhältnis des Außen- zum Innendurchmesser kleiner/gleich 1,6:1. Der Magnet besitzt eine Anfangspermeabilität größer/gleich 0,15 H/m, eine Remanenz größer/gleich 98,5 % oder eine Energiedichte größer/gleich 80 kJ/m3. Zusätzlich wird vorausgesetzt, dass die Abweichung der magnetischen Achsen zu den geometrischen Achsen auf sehr kleine Toleranzen (kleiner als 0,1 mm) beschränkt ist oder die Homogenität des Materials hohe Anforderung erfüllt.
- 2.
- Aktive magnetische Lager, besonders konstruiert oder hergerichtet für die Verwendung in Gaszentrifugen.
ANMERKUNG
Diese Lager weisen üblicherweise die folgenden Merkmale auf:
- —
konstruiert, um einen drehenden Rotor bei 600 Hz oder mehr zentriert zu halten, und
- —
mit einer zuverlässigen elektrischen Stromversorgung und/oder unterbrechungsfreien Stromversorgung (USV) ausgestattet, um mehr als eine Stunde in Betrieb zu bleiben.
- b)
- Lager/Dämpfer:
Lager, besonders konstruiert oder hergerichtet zur Verwendung in Gaszentrifugen, die ein halbkugelförmiges Gegenlager (pivot/cup) enthalten und auf einem Dämpfer montiert sind. Das Lager (pivot) ist in der Regel ein Schaft aus gehärtetem Stahl mit einer Halbkugel am Ende, das am unteren Deckel (siehe Abschnitt 5.1.1.e) montiert wird. Der Schaft kann ein hydrodynamisches Lager beinhalten. Das Gegenlager (cup) ist kugelförmig und besitzt eine halbkugelförmige Vertiefung in einer Oberfläche. Diese Bauteile werden oft getrennt vom Dämpfer geliefert.
- c)
- Molekularpumpen:
Zylinder, besonders konstruiert oder hergerichtet zur Verwendung in Gaszentrifugen mit inneren spiralförmigen gepressten oder gefrästen Nuten und inneren Bohrungen. Typische Abmessungen sind:
Innendurchmesser 75 mm bis 650 mm, Wandstärke größer/gleich 10 mm, mit einer Länge größer/gleich des Durchmessers. Die Nuten sind in der Regel im Querschnitt rechteckig und größer/gleich 2,0 mm tief.
- d)
- Motorstatoren:
Ringförmige Motorstatoren, besonders konstruiert oder hergerichtet für mehrphasige Wechselstromhysteresemotoren (oder -reluktanzmotoren) für Synchronbetrieb unter Vakuumbedingungen im Frequenzbereich größer/gleich 600 Hz und mit einem Leistungsbereich größer/gleich 40 VA. Der Statoren können aus mehrphasigen Windungen auf einem laminierten verlustarmen Eisenkern aus dünnen, üblicherweise 2,0 mm oder weniger dicken Schichten bestehen.
- e)
- Zentrifugenrezipienten oder -gehäuse:
Bestandteile, besonders konstruiert oder hergerichtet zur Aufnahme des Gesamtrotors der Gaszentrifuge. Das Gehäuse besteht aus einem starren Zylinder mit einer Wandstärke bis zu 30 mm mit präzisionsgefertigten Enden zur Aufnahme der Lager und mit einem oder mehreren Flanschen zur Befestigung. Die bearbeiteten Enden sind parallel zueinander und senkrecht zur Zylinderachse mit einer Abweichung kleiner/gleich 0,05°. Das Gehäuse kann auch eine wabenförmige Struktur aufweisen, um mehrere Rotoranordnungen aufzunehmen.
- f)
- Entnahmevorrichtungen:
Rohre, besonders konstruiert oder hergerichtet für die Entnahme von UF6-Gas aus dem Inneren des Zentrifugenrotors nach dem Pitot-Prinzip (d. h. mit einer Öffnung in Richtung des Gasstroms im Rotor, beispielsweise durch Biegen des Endes eines radial angeordneten Rohres) und geeignet, an das zentrale Gaserfassungssytem angeschlossen zu werden.
- 5.2.
- Hilfssysteme, Ausrüstung und Bestandteile, besonders konstruiert oder hergerichtet für Anlagen zur Gaszentrifugenanreicherung
EINLEITUNG
Die Hilfssysteme, Geräte und Komponenten für Anlagen zur Gaszentrifugenanreicherung sind die Systeme der Anlage, die benötigt werden, um UF6 in die Zentrifugen zu transportieren, die einzelnen Zentrifugen zu Kaskaden (oder Stufen) miteinander zu verbinden, so dass eine Anreicherung möglich wird, und die UF6- „Produktfraktion” (product) und UF6- „Restfraktion” (tails) aus den Zentrifugen zu extrahieren, sowie die erforderliche Ausrüstung, um die Zentrifugen zu betreiben oder die Anlage zu steuern.
UF6 wird normalerweise in Autoklaven verdampft und gasförmig durch das Verteiler-Rohrsystem zu den Zentrifugen geführt. Die UF6- „Produktfraktions” - und UF6- „Restfraktions” -ströme aus den Zentrifugen werden ebenfalls über das Rohrsystem zu Kältefallen (ca. 203 K (– 70 °C)) geführt, wo diese vor der Weiterleitung in geeignete Transport- oder Lagerbehälter kondensiert werden. Da eine Anreicherungsanlage aus vielen tausenden Zentrifugen angeordnet in Kaskaden besteht, gibt es viele Kilometer Verteiler-Rohrsystem mit Tausenden von Schweißnähten in weitgehend gleicher Ausführung. Die Ausrüstung, Bestandteile und Rohrsystem sind nach sehr hohen Anforderungen hinsichtlich Vakuum und Sauberkeit hergestellt.
ANMERKUNG
Einige der unten genannten Güter kommen entweder in direkten Kontakt mit dem UF6-Prozessgas oder steuern die Zentrifugen und die Passage des Gases von Zentrifuge zu Zentrifuge bzw. Kaskade zu Kaskade. Zu den UF6-resistenten Werkstoffen gehören Kupfer, Kupferlegierungen, nicht rostender Stahl, Aluminium, Aluminiumoxid, Aluminiumlegierungen, Nickel oder Nickellegierungen mit mindestens 60 Gew.- % und Fluorkohlenwasserstoff-Polymere.
- 5.2.1.
- Zuführungssysteme/ „Produktfraktions” - und „Restfraktions” -entnahmesysteme
Prozesssysteme oder Ausrüstung, besonders konstruiert oder hergerichtet für Anreicherungsanlagen, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen einschließlich:- a)
- Speiseautoklaven, Öfen oder Systeme, mit denen UF6 zum Anreicherungsprozess geleitet wird;
- b)
- Desublimatoren, Kühlfallen oder Pumpen zur Entnahme von UF6 aus dem Anreicherungsprozess für den anschließenden Transfer bei Erhitzung;
- c)
- Erstarrungs- oder Verflüssigungsstationen zur Entnahme von UF6 aus dem Anreicherungsprozess mittels Kompression und Umwandlung von UF6 in die flüssige oder feste Form;
- d)
- „Produktfraktions” - und „Restfraktions” -Ausspeisesysteme zur Weiterleitung von UF6 in Behälter.
- 5.2.2.
- Rohr- und Verteilersysteme
Rohrsysteme und Verteilersysteme, besonders konstruiert oder hergerichtet für die Zuführung von UF6 innerhalb der Zentrifugenkaskaden. Das Rohrsystem ist in der Regel über ein „Dreifach” -Verteilersystem jeder Zentrifuge mit jedem Verteilersystem verbunden. Es gibt daher eine große Zahl von Wiederholungen. Die Systeme sind hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen (siehe ANMERKUNG zu diesem Abschnitt) und nach sehr hohen Anforderungen hinsichtlich Vakuum und Sauberkeit hergestellt.- 5.2.3
- Spezielle Schnellschluss- und Regelventile
- a)
- Schnellschlussventile besonders konstruiert oder hergerichtet, um den UF6-Gasstrom, die „Produktfraktion” und die „Restfraktion” zu regeln.
- b)
- Faltenbalgventile, manuell oder automatisch, als Schnellschluss- oder Kontrollventil, besonders konstruiert oder hergerichtet für den Einsatz in Haupt- oder Nebensystemen von Anlagen für die Gaszentrifugenanreicherung, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen mit einer Nennweite von 10 mm bis 160 mm.
ANMERKUNG
Typische besonders konstruierte oder hergerichtete Ventile beinhalten Faltenbalgventile, Schnellschlusstypen, Schnellschlussventile und andere.
- 5.2.4.
- UF6-Massenspektrometer/Ionenquellen
Massenspektrometer, besonders konstruiert oder hergerichtet zur Aufnahme von Online-Proben des UF6-Gasstromes und mit allen folgenden Eigenschaften:- 1.
- fähig, Ionen mit Massen größer/gleich 320 AME (atomare Masseneinheiten) zu messen, und mit einem Auflösungsvermögen von 1/320 AME;
- 2.
- Ionenquellen, hergestellt aus oder geschützt mit Nickel, Nickel-Kupfer-Legierungen mit einem Nickelgehalt größer/gleich 60 Gew.- % oder Nickel-Chrom-Legierungen,
- 3.
- Elektronenstoß-Ionenquellen und
- 4.
- mit einem für die Isotopenanalyse geeigneten Kollektorsystem ausgestattet.
- 5.2.5.
- Frequenzumwandler
Frequenzumwandler (auch Konverter oder Inverter genannt), besonders konstruiert oder hergerichtet für die Spannungsversorgung von Motorstatoren nach 5.1.2.d), oder Teile, Bestandteile und Baugruppen solcher Frequenzumwandler mit allen folgenden Eigenschaften:- 1.
- Mehrphasenausgang größer/gleich 600 Hz, und
- 2.
- hohe Stabilität (Frequenzstabilisierung besser als 0,2 %).
- 5.3.
- Ausrüstung und Bestandteile, besonders konstruiert oder hergerichtet zur Verwendung für Gasdiffusionsanreicherung
EINLEITUNG
Im Gasdiffusionsverfahren der Isotopentrennung von Uran sind die technischen Hauptbauteile eine spezielle poröse Gasdiffusionswand, Wärmetauscher zur Kühlung des Gases (das durch die Verdichtung erhitzt wird), abgedichtete Ventile und Regelventile sowie Rohrleitungen. Soweit in der Gasdiffusion Uranhexafluorid (UF6) verwendet wird, müssen alle Oberflächen der Ausrüstung, der Verrohrung und der Instrumente (die in Kontakt mit dem Gas kommen) aus UF6-resistenten Werkstoffen hergestellt werden. Eine Gasdiffusionsanlage erfordert eine Reihe der nachfolgenden Baugruppen, so dass die Mengen einen wichtigen Hinweis auf den Verwendungszweck geben können.
- 5.3.1.
- Gasdiffusionstrennwände und Sperrschichtmaterialien
- a)
- Dünne, poröse Filter, besonders konstruiert oder hergerichtet, mit einer Porengröße von 10 nm bis 100 nm, einer Dicke kleiner/gleich 5 mm und — bei Röhrenform — mit einem Durchmesser kleiner/gleich 25 mm, hergestellt aus metallischen, polymeren oder keramischen UF6-resistenten Werkstoffen (siehe ANMERKUNG in Abschnitt 5.4) und
- b)
- Mischungen oder Pulver, besonders konstruiert oder hergerichtet zur Herstellung dieser Filter. Solche Mischungen und Pulver beinhalten Nickel oder Nickellegierungen mit mindestens 60 Gew.- % Nickel, Aluminiumoxid oder UF6-resistente vollfluorierte Kohlenwasserstoff-Polymere mit einer Reinheit größer/gleich 99,9 Gew.- %, sowie einer Korngröße kleiner 10 μm und einem hohen Grad einheitlicher Korngröße, die besonders für die Herstellung von Gasdiffusionstrennwänden konstruiert oder hergerichtet sind.
- 5.3.2.
- Gasdiffusorgehäuse
Hermetisch abgeschlossene Gefäße, besonders konstruiert oder hergerichtet für Gasdiffusionstrennwände, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen (siehe ANMERKUNG in Abschnitt 5.4).- 5.3.3.
- Kompressoren und Verdichter
Besonders konstruierte oder hergerichtete Kompressoren oder Verdichter zur Verwendung für die Gasdiffusionsanreicherung, mit einem Ansaugvermögen größer/gleich 1 m3/min UF6 und einem Förderdruck bis zu 500 kPa, konstruiert für den langfristigen Betrieb in UF6-Umgebung, sowie separate Baugruppen solcher Kompressoren und Verdichter. Diese Kompressoren und Verdichter mit einem Druck-Verhältnis kleiner/gleich 10:1 sind hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen (siehe ANMERKUNG in Abschnitt 5.4).- 5.3.4.
- Wellendichtungen
Wellendichtungen mit Dichtlippe und abgedichteten Gehäuseverbindungen, besonders konstruiert oder hergerichtet, zur Abdichtung der Motorwelle, die den Rotor des Kompressors bzw. des Verdichters mit dem Antriebsmotor verbindet,, so dass eine zuverlässige Abdichtung gegen das Eintreten von Luft in den mit UF6 gefüllten Innenraum des Kompressors oder des Ventilators, sichergestellt ist. Solche Dichtungen sind in der Regel für eine Einwärtsleckrate des Puffergases von weniger als 1000 cm3/min konstruiert- 5.3.5.
- Wärmetauscher zur Kühlung von UF6
besonders konstruierte oder hergerichtete Wärmetauscher, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen (siehe ANMERKUNG in Abschnitt 5.4) und ausgelegt für den Betrieb bei Unterdruck mit einer Leckrate, die den Druckanstieg auf weniger als 10 Pa/h bei einem Druckunterschied von 100 kPa begrenzt.- 5.4.
- Hilfssysteme, Ausrüstung und Bestandteile, besonders konstruiert oder hergerichtet für die Gasdiffusionsanreicherung
EINLEITUNG
Die Hilfssysteme, Geräte und Komponenten für Anlagen zur Gasdiffusionsanreicherung sind Systeme der Anlage, die benötigt werden, um UF6 in die Gasdiffusionsanlage zu transportieren, die einzelnen Baugruppen zu Kaskaden (oder Stufen) miteinander zu verbinden, so dass eine Anreicherung möglich wird, und die UF6- „Produktfraktion” (product) und UF6- „Restfraktion” (tails) aus den Diffusionskaskaden zu extrahieren. Wegen der hohen Trägheitseigenschaften der Diffusionskaskaden führt jede Unterbrechung des Betriebes, und besonders deren Abschaltung, zu schwerwiegenden Konsequenzen. Daher ist eine strikte und konstante Aufrechterhaltung des Vakuums in allen technischen Systemen, der automatische Schutz vor Störungen und eine präzise automatisierte Steuerung des Gasstroms für die Gasdiffusionsanlage von Bedeutung. Dies alles führt zu der Notwendigkeit, die Anlage mit einer hohen Anzahl von speziellen Mess-, Regel- und Kontrollsystemen auszurüsten.
UF6 wird normalerweise im Autoklaven verdampft und gasförmig durch das Verteiler-Rohrsystem zum Eintrittspunkt der Kaskaden geführt. Die UF6- „Produktfraktions” - und UF6- „Restfraktions” -ströme aus den Kaskaden werden über das Rohrsystem zu Kältefallen oder Verdichterstationen geführt, wo das UF6 vor der Weiterleitung in geeignete Transport- oder Lagerbehälter verflüssigt wird. Da eine Gasdiffusionsanreicherungsanlage aus einer großen Zahl von in Kaskaden angeordneten Diffusionsbaugruppen besteht, gibt es viele Kilometer Verteiler-Rohrsystem mit Tausenden von Schweißnähten in weitgehend gleicher Ausführung. Die Ausrüstung, Bestandteile und Rohrsystem sind nach sehr hohen Anforderungen hinsichtlich Vakuum und Sauberkeit hergestellt.
ANMERKUNG
Die nachstehend genannten Güter kommen entweder in direkten Kontakt mit dem UF6-Prozessgas oder steuern direkt den Fluss der Kaskade. Zu den UF6-resistenten Werkstoffen gehören Kupfer, Kupferlegierungen, nicht rostender Stahl, Aluminium, Aluminiumoxid, Aluminiumlegierungen, Nickel oder Nickellegierungen mit mindestens 60 Gew.- % und Fluorkohlenwasserstoff-Polymere.
- 5.4.1.
- Zuführungssysteme/ „Produktfraktions” - und „Restfraktions” -entnahmesysteme
Prozesssysteme oder Ausrüstung, besonders konstruiert oder hergerichtet für Anreicherungsanlagen, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen einschließlich:- a)
- Speiseautoklaven, Öfen oder Systeme, mit denen UF6 zum Anreicherungsprozess geleitet wird;
- b)
- Desublimatoren, Kühlfallen oder Pumpen zur Entnahme von UF6 aus dem Anreicherungsprozess für den anschließenden Transfer bei Erhitzung;
- c)
- Erstarrungs- oder Verflüssigungsstationen zur Entnahme von UF6 aus dem Anreicherungsprozess mittels Kompression und Umwandlung von UF6 in eine flüssige oder feste Form;
- d)
- „Produktfraktions” - und „Restfraktions” -Ausspeisesysteme zur Weiterleitung von UF6 in Behälter.
- 5.4.2.
- Rohr- und Verteilersysteme
Rohrsysteme und Verteilersysteme, besonders konstruiert oder hergerichtet für den Umgang mit UF6 innerhalb der Gasdiffusionskaskaden.ANMERKUNG
Das Rohrsystem ist in der Regel ein „Zweifach” -Verteilersystem, wobei jede Zelle mit den anderen über das Verteilersystem verbunden ist.
- 5.4.3.
- Vakuumsysteme
- a)
- besonders konstruierte oder hergerichtete Vakuumverteiler, Vakuumsammelleitungen und Vakuumpumpen mit einer Saugleistung größer/gleich 5 m3/min.
- b)
- besonders für den Einsatz in UF6-Atmosphären konstruierte oder hergerichtete Vakuumpumpen, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen (siehe ANMERKUNG zu diesem Abschnitt). Diese Pumpen sind entweder Rotationspumpen oder Drehkolbenpumpen, können nach dem Verdrängungsprinzip arbeiten, Fluorkarbondichtungen sowie spezielle Betriebsflüssigkeiten haben.
- 5.4.4.
- Spezielle Schnellschluss- und Regelventile
Besonders konstruierte oder hergerichtete Faltenbalgventile, manuell oder automatisch, als Schnellschluss- oder Kontrollventil, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen für den Einsatz im Haupt- oder Nebensystem einer Gasdiffusionsanlage.- 5.4.5.
- UF6-Massenspektrometer/Ionenquellen
Massenspektrometer, besonders konstruiert oder hergerichtet zur Aufnahme von Online-Proben des UF6-Gasstromes und mit allen folgenden Eigenschaften:- 1.
- fähig, Ionen mit Massen größer/gleich 320 AME (atomare Masseneinheiten) zu messen, und mit einem Auflösungsvermögen von 1/320 AME;
- 2.
- Ionenquellen, hergestellt aus oder geschützt mit Nickel, Nickel-Kupfer-Legierungen mit einem Nickelgehalt größer/gleich 60 Gew.- % oder Nickel-Chrom-Legierungen,
- 3.
- Elektronenstoß-Ionenquellen und
- 4.
- ausgestattet mit einem für die Isotopenanalyse geeigneten Kollektorsystem.
- 5.5.
- Systeme, Ausrüstung und Bestandteile, besonders konstruiert oder hergerichtet für die Verwendung in Aerodynamik-Anreicherungsanlagen
EINLEITUNG
Bei der Aerodynamik-Anreicherung wird ein Gemisch aus gasförmigen UF6 und einem leichten Trägergas (Wasserstoff oder Helium) verdichtet und durch Trennelemente geschickt, wobei die Isotopentrennung durch die Erzeugung hoher Fliehkräfte über eine Krümmung in der Wandgeometrie erreicht wird. Zwei Verfahren dieser Art wurden erfolgreich entwickelt: der Trenndüsenprozess und der Wirbelröhrenprozess (Vortex). Für beide Verfahren sind die Hauptkomponenten einer Trennstufe zylindrische Behälter mit speziellen Trennelementen (Düsen oder Wirbelröhren), Gas-Kompressoren, und Wärmetauschern zur Entfernung der Kompressionswärme. Eine Anlage mit aerodynamischen Trennverfahren benötigt mehrere dieser Stufen, so dass die Mengen einen wichtigen Hinweis auf den Verwendungszweck geben. Da der aerodynamische Prozess UF6 verwendet, müssen alle Oberflächen der Ausrüstung, der Verrohrung und der Instrumente (die in Kontakt mit dem Gas kommen) aus UF6-resistenten Werkstoffen hergestellt oder damit geschützt werden.
ANMERKUNG
Die in diesem Abschnitt genannten Güter kommen entweder in direkten Kontakt mit dem UF6-Prozessgas oder steuern den Fluss in den Kaskaden. Alle Oberflächen, die mit dem Prozessgas in Kontakt kommen, sind ganz aus oder geschützt durch UF6-resistente Materialien. Zu den UF6-resistenten Werkstoffen gehören Kupfer, Kupferlegierungen, nicht rostender Stahl, Aluminium, Aluminiumoxid, Aluminiumlegierungen, Nickel oder Nickellegierungen mit mindestens 60 Gew.- % und Fluorkohlenwasserstoff-Polymere.
- 5.5.1.
- Trenndüsen
Besonders konstruierte oder hergerichtete Trenndüsen und Baugruppen. Die Trenndüsen bestehen aus schlitzförmigen, gekrümmten Kanälen mit einem Krümmungsradius kleiner als 1 mm, korrosionsbeständig gegen UF6, mit einem Trennblech innerhalb der Düse, welches das durch die Düse strömende Gas in zwei Fraktionen teilt.- 5.5.2.
- Wirbelrohre
Besonders konstruierte oder hergerichtete Wirbelrohre und Baugruppen. Zylindrische oder konische Wirbelrohre mit einem oder mehreren tangentialem Gaseintritten, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen. Die Rohre sind mit düsenartigen Zusätzen an einem oder beiden Enden ausgestattet.ANMERKUNG
Der Gasstrom wird tangential an einem Ende oder durch Drallschaufeln in das Wirbelrohr bzw. durch zahlreiche tangentiale Positionen entlang der Peripherie des Rohrs eingeführt.
- 5.5.3.
- Kompressoren und Ventilatoren
Besonders konstruierte oder hergerichtete Kompressoren oder Ventilatoren, hergestellt aus oder geschützt mit Materialien, die korrosionsbeständig gegen UF6/Trägergas (Wasserstoff oder Helium)- Mischungen sind.- 5.5.4.
- Wellendichtungen
Besonders konstruierte oder hergerichtete Wellendichtungen mit Dichtlippe und abgedichtete Gehäuseverbindungen zur Abdichtung der Motorwelle, die den Rotor des Kompressors bzw. des Verdichters mit dem Antriebsmotor verbindet, so dass eine zuverlässige Abdichtung gegen das Austreten von Prozessgas oder Eintreten von Luft oder Dichtgas in den mit UF6/Trägergas-Mischung gefüllten Innenraum des Kompressors oder des Verdichters, sichergestellt ist.- 5.5.5.
- Wärmetauscher für die Gaskühlung
Besonders konstruierte oder hergerichtete Wärmetauscher, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen.- 5.5.6.
- Gehäuse für aerodynamische Trennelemente
Besonders konstruierte oder hergerichtete Gehäuse für aerodynamische Trennelemente zur Aufnahme von Wirbelrohren oder Trenndüsen, hergestellt aus oder geschützt mit UF6–resistenten Werkstoffen.- 5.5.7.
- Zuführungssysteme/ „Produktfraktions” - und „Restfraktions” -entnahmesysteme
Prozesssysteme oder Ausrüstung, besonders konstruiert oder hergerichtet für Anreicherungsanlagen, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen einschließlich:- a)
- Speiseautoklaven, Öfen oder Systeme, mit denen UF6 zum Anreicherungsprozess geleitet wird;
- b)
- Desublimatoren, Kühlfallen oder Pumpen zur Entnahme von UF6 aus dem Anreicherungsprozess für den anschließenden Transfer bei Erhitzung;
- c)
- Erstarrungs- oder Verflüssigungsstationen zur Entnahme von UF6 aus dem Anreicherungsprozess mittels Kompression und Umwandlung von UF6 in die flüssige oder feste Form;
- d)
- „Produktfraktions” - und „Restfraktions” -Ausspeisesysteme zur Weiterleitung von UF6 in Behälter.
- 5.5.8.
- Rohr- und Verteilersysteme
Rohrsysteme und Verteilersysteme, besonders konstruiert oder hergerichtet für den Umgang mit UF6 innerhalb der aerodynamischen Kaskaden, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen. Das Rohrsystem ist in der Regel ein „Zweifach” -Verteilersystem, wobei jede Stufe oder Gruppe von Stufen mit den anderen über das Verteilersystem verbunden ist.- 5.5.9.
- Vakuumsysteme und -pumpen
- a)
- Vakuumsysteme, besonders konstruiert oder hergerichtet für den Einsatz in UF6-haltigen Atmosphären, bestehend aus Vakuumverteilern, Vakuumsammelleitungen und Vakuumpumpen,
- b)
- Vakuumpumpen, besonders konstruiert für den Einsatz in UF6-haltigen Atmosphären, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen. Diese Pumpen können Fluorkarbondichtungen sowie spezielle Betriebsflüssigkeiten verwenden. Diese Pumpen können Fluorkarbondichtungen sowie spezielle Betriebsflüssigkeiten haben.
- 5.5.10.
- Spezielle Schnellschluss- und Regelventile
Faltenbalgventile, manuell oder automatisch, als Schnellschluss- oder Kontrollventil, besonders konstruiert oder hergerichtet für den Einsatz im Haupt- oder Nebensystem von Aerodynamik-Anreicherungsanlagen, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen mit einem Durchmesser größer/gleich 40 mm.- 5.5.11.
- UF6-Massenspektrometer/Ionenquellen
Massenspektrometer, besonders konstruiert oder hergerichtet zur Aufnahme von Online-Proben des UF6-Gasstromes und mit allen folgenden Eigenschaften:- 1.
- fähig, Ionen mit Massen größer/gleich 320 AME (atomare Masseneinheit) zu messen, und mit einem Auflösungsvermögen von 1/320 AME;
- 2.
- Ionenquellen, hergestellt aus oder geschützt mit Nickel, Nickel-Kupfer-Legierungen mit einem Nickelgehalt größer/gleich 60 Gew.- % oder Nickel-Chrom-Legierungen,
- 3.
- Elektronenstoß-Ionenquellen und
- 4.
- einem Kollektorsystem, geeignet für die Isotopenanalyse.
- 5.5.12.
- UF6/Trägergas-Trennsysteme
Prozesssysteme, besonders konstruiert oder hergerichtet zur Trennung von UF6 und Trägergas (Wasserstoff oder Helium).ANMERKUNG
Diese Systeme sind dafür konstruiert, den UF6-Gehalt im Trägergas auf kleiner/gleich 1 ppm zu reduzieren und können folgende Ausrüstung beinhalten:
- a)
- Tieftemperatur-Wärmetauscher und -Trennanlagen, ausgelegt für Temperaturen kleiner/gleich 153 K (– 120 °C), oder
- b)
- Tieftemperatur-Kühlgeräte, ausgelegt für Temperaturen kleiner/gleich 153 K (– 120 °C),
- c)
- Trenndüsen oder Wirbelrohre zum Trennen von UF6 und Trägergas, oder
- d)
- UF6-Kühlfallen.
- 5.6.
- Systeme, Ausrüstung und Bestandteile, besonders konstruiert oder hergerichtet für das Anreicherungsverfahren durch chemischen Austausch oder Ionenaustausch.
EINLEITUNG
Der geringe Masseunterschied zwischen den Uranisotopen verursacht geringe Verschiebungen im chemischen Reaktionsgleichgewicht, was als Grundlage zur Isotopentrennung genutzt werden kann. Zwei Prozesse wurden erfolgreich entwickelt: die Flüssig-Flüssig-Extraktion und die Fest-Flüssig-Ionen-Extraktion.
In der Flüssig-Flüssig-Extraktion werden nicht mischbare Flüssige Phasen (wässrig und organisch) im Gegenstrom durch viele Trennstufen gegeben. Die wässrige Phase besteht aus Uranchlorid in einer Salzsäure-Lösung; die organische Phase aus einem uranchloridhaltigen Extraktionsmittel in einer organischen Lösung. Die Trennstufen der Kaskaden können als Flüssig-Flüssig-Austauschsäulen (z.B. Pulsationskolonnen mit Siebboden) oder als Zentrifugalextraktoren aufgebaut sein. Chemische Umwandlung (Oxidation oder Reduktion) sind an beiden Enden der Trennkaskade erforderlich, um jeweils die Voraussetzungen für den Rückfluss zu schaffen. Bei dem Aufbau ist es wichtig, dass eine Kontamination der Prozessströme mit bestimmten Metallionen vermieden wird. Kunststoff, mit Kunststoff ausgekleidete (einschließlich Fluor-Polymere) und/oder glasbeschichtete Kolonnen und Rohre werden daher verwendet.
Bei der Fest-Flüssig-Ionen-Extraktion erfolgt die Anreicherung durch Uranadsorption/-desorption auf einem speziellen, schnell reagierenden Ionenaustauschharz oder Adsorptionsmittel. Eine Lösung von Uran in Salzsäure oder anderen Chemikalien durchströmt zylindrische Anreicherungskolonnen mit einer Schüttung von Adsorptionsmitteln. Für den kontinuierlichen Prozess ist ein Rückflusssystem notwendig, das das Uran vom Adsorptionsmittel löst und wieder in den Flüssigkeitsstrom überführt, um die „Produktfraktion” und die „Restfraktion” zu sammeln. Dies wird durch die Verwendung von geeigneten Reduktions-/Oxidationsmitteln erreicht, die in separaten externen Kreisläufen vollständig oder teilweise in den Kolonnen selbst regeneriert werden kann. Die Anwesenheit von heißer konzentrierter Salzsäure im Prozess erfordert eine Ausrüstung, die aus speziellen korrosionsbeständigen Materialien hergestellt wird oder durch solche geschützt ist.
- 5.6.1.
- Flüssig-Flüssig-Extraktion (chemischer Austausch)
Gegenstrom-Flüssig-Flüssig-Extraktionskolonnen mit mechanischem Antrieb, besonders konstruiert oder hergerichtet für die Urananreicherung durch chemischen Austausch. Hinsichtlich der Korrosionsbeständigkeit gegen konzentrierte Salzsäurelösungen sind die Kolonnen und deren Einbauten normalerweise hergestellt aus oder geschützt durch geeignete Kunststoffmaterialien (z.B. Fluorkohlenwasserstoff-Polymere) oder Glas. Die Stufenverweilzeit der Kolonnen ist normalerweise auf kleiner/gleich 30 Sekunden ausgelegt.- 5.6.2.
- Flüssig-Flüssig-Zentrifugalextraktoren (chemischer Austausch)
Flüssig-Flüssig-Zentrifugalextraktoren besonders konstruiert oder hergerichtet für die Urananreicherung durch chemischen Austausch. Solche Extraktoren nutzen die Drehbewegung zur Dispersion der organischen und wässrigen Ströme und anschließend die Zentrifugalkraft zur Phasentrennung. Damit sie korrosionsbeständig gegen konzentrierte Salzsäurelösung sind, werden die Extraktoren normalerweise aus geeigneten Kunststoffen (wie fluorkohlenwasserstoffhaltigen Polymeren) oder Glas hergestellt oder damit geschützt. Die Stufenverweilzeit der Zentrifugalextraktoren ist normalerweise auf kleiner/gleich 30 Sekunden ausgelegt.- 5.6.3.
- Uranreduktionssysteme und entsprechende Ausrüstung (chemischer Austausch)
- (a)
- Besonders konstruierte oder hergerichtete elektrochemische Zellen für die Urananreicherung durch chemischen Austausch, um das Uran von einem Valenzzustand zu einem anderen zu reduzieren. Das Zellenmaterial im Kontakt mit den Prozesslösungen muss gegen konzentrierte Salzsäurelösung korrosionsbeständig sein.
ANMERKUNG
Die Kathodenkammer der Zelle muss so ausgelegt werden, dass eine Reoxidation des Urans zu seinen höheren Valenzzuständen verhindert wird. Um das Uran in der Kathodenkammer zu halten, kann die Zelle eine undurchlässige Trennwand aus einem speziellen Kationenaustauschmaterial haben. Die Kathode besteht aus einem geeigneten festen Leiter, beispielsweise Grafit.
- (b)
- Besonders konstruierte oder hergerichtete Systeme am Produktende der Kaskade zur Entnahme von U+ 4 aus dem organischen Strom, wodurch der Säuregehalt und der Säurezusatz zu den elektrochemischen Reduktionszellen geregelt werden.
ANMERKUNG
Diese Systeme bestehen aus Lösungsmittelextraktionsausrüstungen zur Entnahme des U+ 4 aus dem organischen Strom in eine wässrige Lösung, Verdunstungsausrüstung und/oder sonstige Ausrüstung zur Regelung und Kontrolle des pH der Lösung sowie Pumpen und sonstige Transferapparate zur Speisung der elektrochemischen Reduktionszellen. Bei der Auslegung wird vor allem darauf geachtet, dass die wässrige Flüssigkeit nicht mit bestimmten Metallionen kontaminiert wird. Daher sind die Teile des Systems, die mit dem Prozessstrom in Kontakt kommen, aus geeigneten Materialien hergestellt oder damit beschichtet (wie Glas, fluorkohlenwasserstoffhaltigen Polymeren, Polyphenylsulfat, Polyethersulfon und harzimprägniertem Grafit).
- 5.6.4.
- Einspeise-Aufbereitungssysteme (chemischer Austausch)
Besonders konstruierte oder hergerichtete Systeme zur Herstellung hochreiner Uranchloridlösung zur Einspeisung in Isotopen-Trennanlagen, die chemische Austauschverfahren verwenden.ANMERKUNG
Diese Systeme bestehen aus Lösemitteltrenn-, Lösungsabscheidungs- und/oder Ionenaustauschausrüstungen für die Reinigung sowie aus Elektrolysezellen zur Reduzierung von U+ 6 oder U+ 4 zu U+ 3. Sie stellen Uranchloridlösungen mit nur wenigen ppm metallischen Unreinheiten wie Chrom, Eisen, Vanadium, Molybdän und anderen zweiwertigen oder höherwertigen Kationen her. Baustoffe für die Teile des Systems, die für die Verarbeitung des hochreinen U+ 3 bestimmt sind, sind beispielsweise Glas, fluorkohlenwasserstoffhaltige Polymere, Polyphenylsulfat oder kunststoffbeschichtetes Polyethersulfon und harzimprägnierter Grafit.
- 5.6.5.
- Uranoxidationssysteme (chemischer Austausch)
Besonders konstruiert oder hergerichtet für die Oxidation von U+ 3 zu U+ 4 im Anreicherungsverfahren durch chemischen Austausch; U+ 4 wird dann in die Isotopen-Trennkaskade zurückgeleitet.ANMERKUNG
Diese Systeme können folgende Ausrüstung enthalten:
- (a)
- Ausrüstung, mit der Chlor und Sauerstoff mit dem wässrigen Ausfluss aus dem Isotopen-Trennapparat zusammengebracht werden und um das dabei entstehende U+ 4 extrahiert und in den abgetriebenen organischen Strom geleitet wird, der vom Produktende der Kaskade kommt.
- (b)
- Ausrüstung zur Trennung von Wasser und Salzsäure, damit das Wasser und die konzentrierte Salzsäure an entsprechenden Stellen im Prozess zurückgeleitet werden kann.
- 5.6.6.
- Schnell reagierende Ionenaustauschharze/-adsorber (Ionenaustausch)
Schnell reagierende Ionenaustauschharze oder -adsorber, besonders konstruiert oder hergerichtet zur Anreicherung von Uran durch Ionenaustausch unter Verwendung von porös-makrovernetzten Harzen und/oder membranartigen Strukturen, in denen sich die aktiven chemischen Austauschgruppen nur auf der Oberfläche eines inaktiven porösen Trägermaterials befinden, und anderen zusammengesetzten Strukturen in geeigneter Form, einschließlich Partikeln oder Fasern. Das Ionenaustauschharz/der Adsorber haben einen Durchmesser von kleiner/gleich 0,2 mm und müssen chemisch resistent gegen konzentrierte Salzsäurelösungen und physikalisch beständig genug sein, um in der Austauschkolonne nicht zu zerfallen. Diese Harze/Adsorber sind für eine hohe Isotopenaustauschkinetik ausgelegt (Austauschhalbwertzeit weniger als 10 Sekunden) und für den Betrieb bei Temperaturen im Bereich von 373 K (100 °C) bis 473 K (200 °C) geeignet.- 5.6.7.
- Ionenaustauschkolonnen (Ionenaustausch)
Zylindrische Ionenaustauschkolonnen mit einem Durchmesser von mehr als 1000 mm mit Schüttschichten des Ionenaustauschharzes/Adsorbers, besonders konstruiert oder hergerichtet für die Urananreicherung im Ionenaustauschverfahren. Diese Kolonnen sind hergestellt aus oder beschichtet mit Werkstoffen, die resistent gegen konzentrierte Salzsäurelösungen (z. B. Titan oder fluorkohlenwasserstoffhaltige Kunststoffe) und zum Betrieb bei Temperaturen im Bereich von 373 K (100 °C) bis 473 K (200 °C) und einem Druck von über 0,7 MPa geeignet sind.- 5.6.8.
- Ionenaustausch-Rückflusssysteme (Ionenaustausch)
- (a)
- Besonders konstruierte oder hergerichtete chemische oder elektrochemische Reduktionssysteme zur Wiederaufbereitung der chemischen Reduktionsmittel, die in Ionenaustausch-Urananreicherungskaskaden verwendet werden;
- (b)
- besonders konstruierte oder hergerichtete chemische oder elektrochemische Oxidationssysteme zur Wiederaufbereitung der chemischen Oxidationsmittel, die in Ionenaustausch-Urananreicherungskaskaden verwendet werden.
ANMERKUNG
Bei der Ionenaustausch-Anreicherung kann beispielsweise dreiwertiges Titan (Ti+ 3) als reduzierendes Kation benutzen, wobei das Reduktionssystem Ti+ 3 aus Ti+ 4 regeneriert.
Als Oxidationsmittel kann z. B. dreiwertiges Eisen (Fe+ 3) verwendet werden, wobei Fe+ 3 durch Oxidation von Fe+ 2 im Oxidationssystem wiedergewonnen wird.
- 5.7.
- Besonders konstruierte oder hergerichtete Systeme, Ausrüstungen und Bestandteile zur Verwendung in Laser-Anreicherungsanlagen
EINLEITUNG
Die derzeit verwendeten Systeme für die Anreicherungsprozesse mit Hilfe von Lasern lassen sich in zwei Kategorien unterteilen: Anlagen mit atomarem Urandampf als Prozessmedium und Anlagen mit Dampf einer Uranverbindung, der manchmal mit einem anderen Gas oder Gasen gemischt wird, als Prozessmedium. Nach der gebräuchlichen Nomenklatur werden sie folgendermaßen eingeordnet:
- —
Kategorie 1 — atomare Laserisotopentrennung;
- —
Kategorie 2 — molekulare Laserisotopentrennung, einschließlich der chemischen Reaktion durch isotopenselektive Laseraktivierung.
Die Systeme, Ausrüstung und Bestandteile für Laser-Anreicherungsanlagen sind: a) Apparate zur Einspeisung von Uranmetalldampf (zur selektiven Fotoionisation) oder Apparate zur Einspeisung des Dampfes einer Uranverbindung (zur selektiven Fotodissoziation oder selektive Anregung/Aktivierung); b) Apparate zum Auffangen von an- und abgereichertem Uranmetall als „Produktfraktion” und „Restfraktion” in Kategorie 1 und Apparate zum Auffangen von an- und abgereichertem Uranmetall als „Produktfraktion” und „Restfraktion” in Kategorie 2; c) Prozesslasersysteme zur selektiven Anregung von Uranen des Typs Uran-235 und d) Ausrüstung für die Einspeise-Aufbereitung und die Produktumwandlung. Aufgrund der Komplexität der Spektroskopie von Uranatomen und -verbindungen könnten alle möglichen verfügbaren Techniken im Bereich Laser und Laseroptik zur Anwendung kommen.
ANMERKUNG
Viele der in diesem Abschnitt aufgeführten Teile kommen mit Uranmetalldampf oder -flüssigkeit oder mit Prozessgas aus UF6 oder einem Gemisch aus UF6 und anderen Gasen in unmittelbaren Kontakt. Sämtliche Oberflächen, die direkt mit UF6 in Berührung kommen, sind aus korrosionsbeständigen Werkstoffen hergestellt oder damit beschichtet. Die gegen den Dampf oder die Flüssigkeit von Uranmetall oder einer Uranlegierung korrosionsbeständigen Werkstoffe für Teile von Laser-Anreicherungsanlagen sind yttriumoxidbeschichteter Grafit und Tantal;zu den UF6-resistenten Werkstoffen gehören Kupfer, Kupferlegierungen, nichtrostender Stahl, Aluminium, Aluminiumoxid, Aluminiumlegierungen, Nickel oder Legierungen mit einem Nickelgehalt größer/gleich 60 Gew.- % und Fluorkohlenwasserstoff-Polymere.
- 5.7.1.
- Uranverdampfungssysteme (atomare Laserisotopentrennung)
Besonders zur Verwendung in der Laseranreicherung konstruierte oder hergerichtete Uranmetall-Verdampfungssysteme.ANMERKUNG
Diese Systeme können Elektronenstrahlkanonen enthalten und sind für eine Ausgangsleistung größer/gleich 1 kW auf das Target ausgelegt, um ausreichend Uranmetalldampf für die Laseranreicherung zu erzeugen.
- 5.7.2.
- Handhabungssysteme und Komponenten für flüssiges oder gasförmiges Uranmetall (atomare Laserisotopentrennung)
Besonders zur Verwendung in der Laseranreicherung konstruierte oder hergerichtete Handhabungssysteme für geschmolzenes Uran, für geschmolzene Uranlegierungen oder für Uranmetalldampf und besonders dafür konstruierte oder hergerichtete Bestandteile.ANMERKUNG
Diese Handhabungssysteme können Tiegel und Kühlanlagen für diese Tiegel beinhalten. Die Tiegel oder andere Teile des Systems, die in Kontakt mit dem geschmolzenen Uran, den geschmolzenen Uranlegierungen oder dem Urandampf kommen, sind hergestellt aus oder geschützt mit geeigneten wärme- und korrosionsbeständigen Materialien. Diese geeigneten Materialien können Tantal, yttriumoxid(Y2O3)-beschichteter Grafit, mit anderen Oxiden Seltener Erden beschichteter Grafit (siehe INFCIRC254/Teil 2 in der jeweils gültigen Fassung) oder Mischungen daraus umfassen.
- 5.7.3.
- Uranmetall- „Produktfraktions” - und „Restfraktions” -entnahmesysteme (atomare Laserisotopentrennung)
„Produktfraktions” - und „Restfraktions” -entnahmesysteme, besonders konstruiert oder hergerichtet für das Sammeln von Uranmetall in flüssiger und fester Form.ANMERKUNG
Komponenten dieser Entnahmesysteme sind hergestellt aus oder geschützt mit wärme- und korrosionsbeständigen Materialien gegenüber Uranmetalldampf oder flüssigem Uran (wie Tantal, yttriumoxid(Y2O3)-beschichteter Grafit) und können Rohrleitungen, Ventile, Anschlussstutzen, Abstichrinnen, Durchführungen, Wärmetauscher und Kollektorplatten für die magnetische, elektrostatische oder andere Trennmethoden beinhalten.
- 5.7.4.
- Behälter für Separatoren (atomare Laserisotopentrennung)
Zylindrische oder rechteckige Kessel, besonders konstruiert oder hergerichtet zur Aufnahme der Uranmetalldampfquelle, der Elektronenstrahlkanone und der „Produktfraktions” - und „Restfraktions” -entnahmesysteme.ANMERKUNG
Diese Behälter haben eine Vielzahl von Anschlüssen für Strom- und Wasserleitungen, Laserstrahlfenstern, Verbindungen zu Vakuumpumpen und Messtechnik für Diagnostik und Überwachung. Sie lassen sich auch zum Zweck eines Austausches von Innenteilen öffnen und schließen.
- 5.7.5.
- Überschallexpansionsdüsen (molekulare Laserisotopentrennung)
Überschallexpansionsdüsen, besonders konstruiert oder hergerichtet zur Kühlung von Mischungen aus UF6 und Trägergas auf Temperaturen kleiner/gleich 150 K (– 123 °C), hergestellt aus UF6-resistenten Werkstoffen.- 5.7.6.
- „Produktfraktions” - und „Restfraktions” -entnahmesysteme (molekulare Laserisotopentrennung)
Komponenten oder Baugruppen, besonders konstruiert oder hergerichtet für die „Produktfraktions” - und „Restfraktions” -entnahme nach der Bestrahlung mit Laser.ANMERKUNG
In einem Beispiel der molekularen Laserisotopentrennung dienen die „Produktfraktions” -entnahmesysteme der Sammlung von angereicherten Uranpentafluorid (UF5) im festen Zustand. Die „Produktfraktions” -entnahmesysteme können aus Filtern, Prallabscheidern, Zyklonen, oder Kombinationen daraus bestehen und müssen gegen eine UF5-/UF6-Atmosphäre korrosionsbeständig sein.
- 5.7.7.
- UF6/Trägergas-Kompressoren (molekulare Laserisotopentrennung)
Kompressoren für UF6/Trägergas-Mischungen, besonders konstruiert oder hergerichtet für den Langzeitbetrieb in einer UF6-haltigen Atmosphäre. Die Komponenten dieser Kompressoren, die in Kontakt mit dem Prozessgas kommen, sind hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen.- 5.7.8.
- Wellendichtungen (molekulare Laserisotopentrennung)
Wellendichtungen mit Dichtlippe und abgedichteten Gehäuseverbindungen, besonders konstruiert oder hergerichtet zur Abdichtung der Motorwelle, die mit dem Rotor des Kompressors verbunden ist, so dass eine zuverlässige Abdichtung gegen das Austreten von Prozessgas oder das Eintreten von Luft oder Dichtungsgas in den mit UF6/Trägergas-Mischung gefüllten Innenraum des Kompressors sichergestellt ist.- 5.7.9.
- Fluorierungssysteme (molekulare Laserisotopentrennung)
Besonders zur Fluorierung von UF5 (fest) zu UF6 (gasförmig) konstruierte oder hergerichtete Systeme.ANMERKUNG
Diese Systeme sind so konstruiert, um das gesammelte UF5-Pulver zu UF6 zu fluorieren und anschließend in Produktbehältern oder für die Weitergabe als Einspeisung zur weiteren Anreicherung zu sammeln. In einer Methode kann die Fluorierungsreaktion in der Isotopentrennung für eine direkte Reaktion und Zurückgewinnung aus den „Produktfraktions” -Sammlern durchgeführt werden. In einer anderen Methode kann das UF5-Pulver aus den „Produktfraktions” -Sammlern in ein Reaktionsgefäß (z. B. Wirbelschichtreaktor, Schneckenreaktor oder Flame-Tower-Reaktor) zur Fluorierung herausgenommen/weitergeleitet werden. In beiden Fällen kann Ausrüstung für die Lagerung und die Weiterleitung von Fluor (oder anderen geeigneten Fluorierungsmitteln) sowie für die Sammlung und die Weitergabe für UF6 verwendet werden.
- 5.7.10.
- UF6-Massenspektrometer/Ionenquellen (molekulare Laserisotopentrennung)
Massenspektrometer, besonders konstruiert oder hergerichtet zur Aufnahme von Online-Proben des UF6-Gasstromes und mit allen folgenden Eigenschaften:- 1.
- fähig, Ionen mit Massen größer/gleich 320 AME (atomare Masseneinheit) zu messen, und mit einem Auflösungsvermögen von 1/320 AME,
- 2.
- Ionenquellen, hergestellt aus oder geschützt mit Nickel, Nickel-Kupfer-Legierungen mit einem Nickelgehalt größer/gleich 60 Gew.- % oder Nickel-Chrom-Legierungen,
- 3.
- Elektronenstoß-Ionenquellen und
- 4.
- einem Kollektorsystem, geeignet für die Isotopenanalyse.
- 5.7.11.
- Zuführungssysteme/ „Produktfraktions” - und „Restfraktions” -entnahmesysteme (molekulare Laserisotopentrennung)
Prozesssysteme oder Ausrüstung, besonders konstruiert oder hergerichtet für Anreicherungsanlagen, hergestellt aus oder geschützt mit UF6-resistenten Werkstoffen einschließlich:- a)
- Speiseautoklaven, Öfen oder Systeme, mit denen UF6 zum Anreicherungsprozess geleitet wird;
- b)
- Desublimatoren, Kühlfallen oder Pumpen zur Entnahme von UF6 aus dem Anreicherungsprozess und beheizter Transfer;
- c)
- Erstarrungs- oder Verflüssigungsstationen zur Entnahme von UF6 aus dem Anreicherungsprozess mittels Kompression und Umwandlung von UF6 in die flüssige oder feste Form;
- d)
- „Produktfraktions” - und „Restfraktions” -Ausspeisesysteme zur Weiterleitung von UF6 in Behälter.
- 5.7.12.
- UF6/Trägergas-Trennsysteme (molekulare Laserisotopentrennung)
Prozesssysteme, besonders konstruiert oder hergerichtet zur Trennung von UF6 und Trägergas.ANMERKUNG
Diese Systeme können die folgende Ausrüstung enthalten:
- a)
- Tieftemperatur-Wärmetauscher und -Trennanlagen, ausgelegt für Temperaturen kleiner/gleich 153 K (– 120 °C),
- b)
- Tieftemperatur-Kühlgeräte, ausgelegt für Temperaturen kleiner/gleich 153 K (– 120 °C),
- c)
- UF6-Kühlfallen.
- 5.7.13.
- Laser-Systeme
Laser oder Lasersysteme, besonders konstruiert oder hergerichtet zur Trennung von Uranisotopen.ANMERKUNG
Die Laser und Laserkomponenten von Bedeutung für Laser-Anreicherungsanlagen beinhalten auch jene, die in INFCIRC/254/Teil 2 (in der jeweils gültigen Fassung) spezifiziert werden. Das Lasersystem enthält typischerweise beides: optische und elektronische Komponenten zur Führung des Laserstrahls (oder –strahlen) und die Übertragung in die Isotopentrennkammer. Das Lasersystem für atomare Laserisotopentrennung besteht normalerweise aus abstimmbaren Farbstoff-(Dye-)Lasern, die mittels einer anderen Laserart (Kupferdampf-Laser oder bestimmte Festkörperlaser) gepumpt werden. Das Lasersystem für die atomare Laserisotopentrennung kann sich aus CO2-Lasern oder Excimer-Lasern und einem optischen Resonator zusammensetzen. Laser oder Lasersysteme für beide Methoden benötigen für den Betrieb über längere Zeiträume eine Frequenzstabilisation des Spektrums.
- 5.8.
- Systeme, Ausrüstungen und Bestandteile, besonders konstruiert oder hergerichtet für Anreicherungsanlagen, die das Plasmatrennverfahren verwenden
EINLEITUNG
Im Plasmatrennprozess passiert ein Plasma von Uranionen ein elektrisches Feld, das auf die Resonanzfrequenz des U-235-Ions abgestimmt ist, so dass diese bevorzugt Energie absorbieren und sich der Durchmesser ihrer spiralförmigen Bahnen vergrößert. Ionen mit großen Bahndurchmessern werden eingefangen, wodurch ein U-235-engereichertes Produkt entsteht. Das Plasma, das durch Ionisierung von Urandampf erzeugt wird, wird durch ein starkes Magnetfeld, das mit einem supraleitfähigen Magneten erzeugt wird, in einer Vakuumkammer gehalten. Die wichtigsten technischen Systeme des Prozesses sind das Uranplasmaerzeugungssystem, das Separatormodul mit supraleitfähigen Magneten (siehe INFCIRC/254/Teil 2 in der jeweils gültigen Fassung) und Metallentnahmesystemen zur Sammlung von „Produktfraktion” und „Restfraktion” .
- 5.8.1.
- Mikrowellenenergiequellen und -strahler
Mikrowellenenergiequellen und -strahler, besonders konstruiert oder hergerichtet zur Produktion oder Beschleunigung von Ionen mit einer Ausgangsfrequenz größer als 30 GHz und einer mittleren Ausgangsleistung größer als 50 kW.- 5.8.2.
- Hochfrequenzanregungsspulen
Hochfrequenzanregungsspulen, besonders konstruiert oder hergerichtet für Frequenzen größer als 100 kHz und geeignet für eine mittlere Ausgangsleistung größer als 40 kW.- 5.8.3.
- Uranplasmaerzeugungssysteme
Systeme, besonders konstruiert oder hergerichtet für die Erzeugung von Uranplasma zur Verwendung in einer Plasmatrennanlage.5.8.4. [Wird nicht länger verwendet — seit 14. Juni 2013]
- 5.8.5.
- Uranmetall- „Produktfraktions” - und „Restfraktions” -entnahmesysteme
„Produktfraktions” - und „Restfraktions” -entnahmesysteme, besonders konstruiert oder hergerichtet zum Sammeln des Uranmetalls in fester Form. Diese Entnahmesysteme sind hergestellt aus oder geschützt mit Materialien, die wärme- und korrosionsbeständig gegenüber Uranmetalldampf sind, wie yttriumoxid(Y2O3)-beschichteter Grafit oder Tantal.- 5.8.6.
- Behälter für Separatoren
Zylindrische Kessel, besonders konstruiert oder hergerichtet zur Verwendung in einer Anlage mit Plasmatrennverfahren zur Aufnahme der Uranplasmaquelle, der Hochfrequenzspule und der „Produktfraktions” - und „Restfraktions” -entnahmesysteme.ANMERKUNG
Diese Behälter haben eine Vielzahl von Stromanschlüssen, Verbindungen zu Diffusionspumpen und Messtechnik für Diagnostik und Überwachung. Sie lassen sich auch zum Zweck eines Austausches von Innenteilen öffnen und schließen und sind aus geeignetem nichtmagnetischem Material, wie rostfreiem Stahl, aufgebaut.
- 5.9.
- Systeme, Ausrüstungen und Bestandteile, besonders konstruiert oder hergerichtet zur Verwendung in Anreicherungsanlagen, die elektromagnetische Verfahren verwenden
EINLEITUNG
Beim elektromagnetischen Verfahren werden die durch Ionisierung eines Einspeisesalzes (in der Regel UCl4) erzeugten Uranmetallionen beschleunigt und durch ein Magnetfeld geleitet. Ionen verschiedener Isotopen folgen unterschiedlichen Pfaden. Die wichtigsten Bestandteile einer elektromagnetischen Isotopen-Trennanlage sind: ein Magnetfeld für die Umlenkung der Ionenstrahlen/Isotopentrennung, eine Ionenquelle mit Beschleunigungssystem und ein Sammelbehälter für die abgetrennten Ionen. Zusatzsysteme für den Prozess sind das Stromversorgungssystem für den Magneten, das Hochspannungs-Stromversorgungssystem für die Ionenquelle, das Vakuumsystem und die komplexen chemischen Systeme für die Entnahme des Produkts und die Reinigung/Rückgewinnung der Bestandteile.
- 5.9.1.
- Elektromagnetische Isotopentrenner
Elektromagnetische Isotopentrenner, besonders konstruiert oder hergerichtet zur Trennung von Uranisotopen, sowie Ausrüstungen und Bestandteile hierfür, darunter:- a)
- Ionenquellen
Besonders konstruierte oder hergerichtete Einfach- oder Mehrfach-Ionenquellen, bestehend aus einer Dampfquelle, einem Ionisierer und Strahlbeschleuniger, hergestellt aus geeigneten Materialien wie Grafit, rostfreiem Stahl oder Kupfer und geeignet zur Erzeugung eines Ionenstroms von 50 mA oder mehr.
- b)
- Ionenkollektoren
Ionenkollektorplatten mit zwei oder mehr Schlitzen einschließlich Sammelbehälter, besonders konstruiert oder hergerichtet zur Bündelung der Ionenstrahlen von angereichertem oder abgereichertem Uran, bestehend aus geeigneten Materialien wie Grafit oder rostfreiem Stahl.
- c)
- Vakuumbehälter
Besonders konstruierte oder hergerichtete Vakuumbehälter für elektromagnetische Urantrenner, hergestellt aus geeigneten nichtmagnetischen Materialien wie rostfreiem Stahl für den Betrieb bei einem Druck von 0,1 Pa oder weniger.
ANMERKUNG
Die Behälter sind besonders für Ionenquellen, Kollektorplatten und wassergekühlte Auskleidungen konstruiert. Anschlüsse für Diffusionspumpen sind vorgesehen; die Behälter lassen sich zur Entnahme und zum Wiedereinbau dieser Bestandteile öffnen und schließen.
- d)
- Magnetpolstücke
Besonders konstruierte oder hergerichtete Magnetpolstücke mit einem Durchmesser von mehr als 2 m zur Erzeugung eines konstanten Magnetfelds in einem elektromagnetischen Isotopentrenner und zur Übertragung des Magnetfelds zwischen nebeneinanderliegenden Isotopentrennern.
- 5.9.2.
- Hochspannungsstromversorgung
Besonders konstruierte oder hergerichtete Hochspannungsstromversorgung für Ionenquellen mit allen folgenden Eigenschaften: geeignet für den kontinuierlichen Betrieb, Ausgangsspannung 20000 V oder mehr, Ausgangsstromstärke 1 A oder mehr sowie Spannungsstabilisierung besser als 0,01 % über eine Zeitdauer von 8 Stunden.- 5.9.3.
- Stromversorgung der Magnete
Besonders konstruierte oder hergerichtete Hochleistungs- und Gleichstromversorgung der Magnete mit allen folgenden Eigenschaften: geeignet für den kontinuierlichen Betrieb mit einem Ausgangsstrom größer/gleich 500 A bei einer Spannung größer/gleich 100 V und Strom- oder Spannungsstabilisierung besser als 0,01 % über eine Zeitdauer von 8 Stunden.- 6.
- Anlagen zur Herstellung von Schwerem Wasser, Deuterium oder Deuteriumverbindungen und besonders konstruierte oder hergerichtete Ausrüstungen hierfür
EINLEITUNG
Schweres Wasser kann durch viele verschiedene Verfahren gewonnen werden. Als rentabel haben sich jedoch zwei Verfahren herausgestellt: das Wasser-Schwefelwasserstoff-Austauschverfahren (GS-Verfahren) und das Ammoniak-Wasserstoff-Austauschverfahren.
Das GS-Verfahren beruht auf dem Austausch von Wasserstoff und Deuterium zwischen Wasser und Schwefelwasserstoff in einer Reihe von Kolonnen, deren oberer Teil im Betrieb kalt und deren unterer Teil heiß ist. Wasser fließt von oben nach unten durch die Kolonnen, während das Schwefelwasserstoffgas von unten nach oben zirkuliert. Eine Reihe von Siebplatten trägt zur Mischung des Gases und des Wassers bei. Deuterium migriert bei niedrigen Temperaturen zu Wasser und bei hohen Temperaturen zu Schwefelwasserstoff. Deuteriumangereichertes Gas oder Wasser wird von den Kolonnen der ersten Stufe an dem Punkt entnommen, an dem sich der heiße und der kalte Abschnitt treffen, und der Prozess wird in Kolonnen weiterer Stufen wiederholt. Das Produkt der letzten Stufe, nämlich Wasser, dessen Deuteriumgehalt bis zu 30 % angereichert ist, wird in einen Destillierapparat geleitet, in dem Schweres Wasser in Reaktorqualität, d. h. 99,75 % Deuteriumoxid, erzeugt wird.
Beim Ammoniak-Wasserstoff-Austauschverfahren wird Deuterium durch den Kontakt mit flüssigem Ammoniak in Gegenwart eines Katalysators aus Synthesegas extrahiert. Das Synthesegas wird in Austauschkolonnen und in einen Ammoniakkonverter eingespeist. In den Kolonnen strömt das Gas von unten nach oben, während das flüssige Ammoniak von oben nach unten fließt. Das Deuterium wird im Synthesegas vom Wasserstoff abgetrieben und im Ammoniak konzentriert. Das Ammoniak strömt dann in einen Ammoniakcracker am unteren Ende der Kolonne, während das Gas in einen Ammoniakkonverter am oberen Ende strömt. Eine weitere Anreicherung erfolgt in nachgeschalteten Stufen, und Schweres Wasser in Reaktorqualität wird durch Nachdestillierung erzeugt. Das eingespeiste Synthesegas kann von einer Ammoniakanlage kommen, die zusammen mit einer Schwerwasser-Ammoniak-Wasserstoff-Austauschanlage gebaut werden kann. Im Ammoniak-Wasserstoff-Austauschverfahren kann auch normales Wasser als Deuteriumquelle verwendet werden.
Viele der wichtigen Ausrüstungsteile von Schwerwassergewinnungsanlagen, die das GS-Verfahren oder das Ammoniak-Wasserstoff-Austauschverfahren verwenden, werden auch in verschiedenen Anlagen der chemischen oder der Erdölindustrie verwendet. Das trifft vor allem auf kleine Anlagen zu, die das GS-Verfahren verwenden. Allerdings sind nur wenige der Teile standardmäßig erhältlich. Beim GS- und beim Ammoniak-Wasserstoff-Austauschverfahren müssen große Mengen leicht entzündlicher, korrosiver und toxischer Flüssigkeiten bei hohem Druck gehandhabt werden. Daher müssen bei der Festlegung von Konstruktions- und Betriebsnormen für Anlagen und Ausrüstungen für diese Verfahren die Materialauswahl und die Spezifikationen sorgfältig geprüft werden, um eine lange Betriebsdauer mit hohen Sicherheits- und Zuverlässigkeitsstandards sicherzustellen. Die Wahl der Größe ist in erster Linie eine Frage der Rentabilität und des Bedarfs. Daher dürfte der größte Teil der Ausrüstung nach den Bedürfnissen der Kunden hergestellt werden.
Schließlich wird darauf hingewiesen, dass sowohl beim GS- als auch beim Ammoniak-Wasserstoff-Austauschverfahren Ausrüstungen, die für sich genommen nicht speziell zur Erzeugung von Schwerem Wasser konstruiert oder hergerichtet sind, zu Systemen zusammengebaut werden können, die speziell dazu dienen. Das Katalysatorsystem, das im Ammoniak-Wasserstoff-Austauschverfahren verwendet wird, und die Wasserdestillierungssysteme, die in beiden Verfahren bei der Nachkonzentration von Schwerem Wasser zu Wasser in Reaktorqualität verwendet werden, sind Beispiele dafür.
Zur Ausrüstung, die speziell zur Herstellung von Schwerem Wasser entweder mit dem Wasser-Schwefelwasserstoff-Austauschverfahren oder dem Ammoniak-Wasserstoff-Austauschverfahren konstruiert oder hergerichtet wird, gehören:- 6.1.
- Wasser-Schwefelwasserstoff-Austauschkolonnen
Austauschkolonnen mit einem Durchmesser von mindestens 1,5 m zum Betrieb bei einem Nenndruck größer/gleich 2 MPa (300 psi), besonders konstruiert oder hergerichtet zur Herstellung von Schwerem Wasser mit dem Wasser-Schwefelwasserstoff-Austauschverfahren.- 6.2.
- Ventilatoren und Kompressoren
Ein-Phasen-Niedrig-Zentrifugalventilatoren (d. h. 0,2 MPa oder 30 psi) oder Kompressoren für die Schwefelwasserstoffgaszirkulation (d. h. Gas mit mehr als 70 % H2S), besonders konstruiert oder hergerichtet zur Herstellung von Schwerem Wasser mit dem Wasser-Schwefelwasserstoff-Austauschverfahren. Diese Ventilatoren oder Kompressoren können einen Durchsatz von größer/gleich 56 m3/s (120000 SCFM) und ein Ansaugevermögen von größer/gleich 1,8 MPa (260 psi) haben. Sie haben Dichtungen, die für den nassen H2S-Betrieb konstruiert sind.- 6.3.
- Ammoniak-Wasserstoff-Austauschkolonnen
Ammoniak-Wasserstoff-Austauschkolonnen mit einer Höhe von größer/gleich 35 m (114,3 ft) und einem Durchmesser von 1,5 m (4,9 ft) bis 2,5 m (8,2 ft), geeignet für einen Betriebsdruck von mehr als 15 MPa (2225 psi), besonders konstruiert oder hergerichtet für die Herstellung von Schwerem Wasser mit dem Ammoniak-Wasserstoff-Austauschverfahren. Diese Kolonnen haben mindestens eine Axialöffnung mit Flansch mit dem gleichen Durchmesser wie das zylindrische Teil, durch das die Innenteile der Kolonne eingeführt oder entnommen werden können.- 6.4.
- Kolonneninnenteile und Stufenpumpen
Kolonneninnenteile und Stufenpumpen, besonders konstruiert oder hergerichtet für Schwerwassererzeugungs-Kolonnen unter Verwendung des Ammoniak-Wasserstoff-Austauschverfahrens. Zu den Innenteilen gehören speziell konstruierte Stufenkontaktböden, die Gas und Flüssigkeit mischen. Zu den Stufenpumpen gehören speziell konstruierte Tauschpumpen für die Zirkulation des flüssigen Ammoniaks in einer Kontaktstufe innerhalb der Stufenkolonne.- 6.5.
- Ammoniakcracker
Ammoniakcracker für einen Betriebsdruck von größer/gleich 3 MPa (450 psi), besonders konstruiert oder hergerichtet für die Herstellung von Schwerem Wasser unter Verwendung des Ammoniak-Wasserstoff-Austauschverfahrens.- 6.6.
- Infrarot-Absorptionsanalysegeräte
Infrarot-Absorptionsanalysegeräte, geeignet zur laufenden Messung des Wasserstoff-Deuterium-Verhältnisses bei Deuteriumkonzentrationen größer/gleich 90 %.- 6.7.
- Katalytische Brenner
Katalytische Brenner zur Umwandlung von angereichertem Deuteriumgas in Schweres Wasser, besonders konstruiert oder hergerichtet zur Herstellung von Schwerem Wasser unter Verwendung des Ammoniak-Wasserstoff-Austauschverfahrens.- 6.8.
- Vollständige Systeme zur Anreicherung oder Reinigung (upgrade systems) von Schwerem Wasser oder Säulen hierfür
Vollständige Systeme zur Anreicherung oder Reinigung (upgrade systems) von Schwerem Wasser oder Säulen hierfür, besonders konstruiert oder hergerichtet zur Anreicherung oder Reinigung von Schwerem Wasser auf Reaktorkonzentration.ANMERKUNG
Diese Systeme, bei denen normalerweise die Wasserdestillierung verwendet wird, um Schweres Wasser von Leichtem Wasser zu trennen, sind besonders konstruiert oder hergerichtet, um aus dem eingesetzten Ausgangsstoff des Schweren Wassers geringerer Konzentration Schweres Wasser in Reaktorqualität (d. h. in der Regel 99,75 % Deuteriumoxid) zu erzeugen.
- 6.9.
- Konverter oder Ausrüstung für die Ammoniak-Synthese
Konverter oder Ausrüstung für die Ammoniak-Synthese, besonders konstruiert oder hergerichtet für die Erzeugung von Schwerem Wasser unter Verwendung des Ammoniak-Wasserstoff-Austauschverfahrens.ANMERKUNG
Bei diesen Konvertern oder Ausrüstungen wird das Synthesegas (Stickstoff und Wasserstoff) einer Ammoniak-Wasserstoff-Hochdruck-Austauschsäule (oder -säulen) entnommen und das synthetisierte Ammoniak in die Austauschsäule (oder -säulen) zurückgeführt.
- 7.
- Anlagen zur Umwandlung von Uran und Plutonium für die Herstellung von Brennelementen und die Trennung von Uranisotopen gemäß den Abschnitten 4 und 5 und besonders konstruierte oder hergerichtete Ausrüstungen hierfür
AUSFUHREN
Der Export einer kompletten Anlage in diesen Grenzen erfolgt nur nach den Verfahren der Leitlinien. Sämtliche Anlagen, Systeme und besonders konstruierte oder hergerichtete Ausrüstung in diesen Grenzen kann für die Verarbeitung, die Herstellung und die Verwendung von besonderem spaltbaren Material verwendet werden.- 7.1.
- Anlagen zur Umwandlung von Uran und besonders konstruierte oder hergerichtete Ausrüstung hierfür
EINLEITUNG
Uranumwandlungsanlagen und -systeme eignen sich für eine oder mehrere Umwandlungen von einer Uranverbindung in eine andere, darunter: Umwandlung von Uranerzkonzentraten in UO3, Umwandlung von UO3 in UO2, Umwandlung von Uranoxid in UF4, UF6 oder UCl4, Umwandlung von UF4 in UF6, Umwandlung von UF6 in UF4, Umwandlung von UF4 in Uranmetall sowie Umwandlung von Uranfluorid in UO2. Viele der wichtigsten Ausrüstungsteile von Uranumwandlungsanlagen werden auch in der chemischen Verfahrenstechnik verwendet. Ausrüstungsteile bei diesen Verfahren sind beispielsweise Öfen, Drehöfen, Wirbelschichtreaktoren, Flame-Tower-Reaktoren, Flüssigkeitszentrifugen, Destillationskolonnen und Flüssig-Flüssig-Extraktionskolonnen. Nur wenige der Teile sind jedoch standardmäßig erhältlich, die meisten dürften nach den Anforderungen und Spezifikationen der Kunden hergestellt werden. In manchen Fällen sind spezielle Konstruktions- und Bauerwägungen erforderlich, damit den korrosiven Eigenschaften bestimmter verwendeter Chemikalien (HF, F2, CIF3 und Uranfluoride) und der nuklearen Kritikalität Rechnung getragen wird. Schließlich ist darauf hinzuweisen, dass bei allen Uranumwandlungsverfahren Geräte, die für sich genommen nicht speziell für die Uranumwandlung konstruiert oder hergerichtet sind, zu Systemen zusammengebaut werden können, die dazu bestimmt sind.
- 7.1.1.
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von Uranerzkonzentraten in UO3
ANMERKUNG
Uranerzkonzentrate können in UO3 umgewandelt werden, indem das Erz erst in Salpetersäure aufgelöst und reines Uranylnitrat mit Hilfe eines Lösungsmittels wie Tributylphosphat extrahiert wird. Dann wird das Uranylnitrat zu UO3 umgewandelt, indem es entweder konzentriert und denitriert wird oder indem es mit Ammoniakgas zu Ammoniumdiuranat neutralisiert und anschließend gefiltert, getrocknet und kalziniert wird.
- 7.1.2.
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von UO3 in UF6
ANMERKUNG
Die Umwandlung von UO3 in UF6 kann direkt durch Fluorierung erfolgen. Für das Verfahren ist eine Fluorgas- oder Chlortrifluoridquelle erforderlich.
- 7.1.3.
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von UO3 in UO2
ANMERKUNG
Die Umwandlung von UO3 in UO2 kann durch die Reduktion von UO3 mit Spaltammoniakgas oder Wasserstoff erfolgen.
- 7.1.4
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von UO2 in UF4
ANMERKUNG
Die Umwandlung von UO2 in UF4 kann durch die Reaktion von UO2 in Fluorwasserstoffgas (HF) bei 300-500 °C erfolgen.
- 7.1.5.
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von UF4 in UF6
ANMERKUNG
Die Umwandlung von UF4 in UF6 erfolgt durch die exothermische Reaktion mit Fluor in einem Turmreaktor. UF6 wird aus dem heißen Gasstrom kondensiert, indem der abgehende Strom durch eine auf – 10 °C gekühlte Kühlfalle geleitet wird. Für das Verfahren ist eine Fluorgasquelle erforderlich.
- 7.1.6.
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von UF4 in Uranmetall
ANMERKUNG
Die Umwandlung von UF4 in Uranmetall erfolgt durch die Reduktion von Magnesium (bei großen Mengen) oder Kalzium (bei kleinen Mengen). Die Reaktion wird bei Temperaturen über dem Schmelzpunkt von Uran (1130 °C) durchgeführt.
- 7.1.7.
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von UF6 in UO2
ANMERKUNG
Die Umwandlung von UF6 in UO2 kann durch drei verschiedene Verfahren erfolgen: Beim ersten wird UF6 reduziert und dann mit Wasserstoff oder Dampf zu UO2 hydrolysiert. Beim zweiten Verfahren wird UF6 durch Lösung in Wasser hydrolysiert, Ammoniak hinzugefügt, um Ammoniumdiuranat auszufällen, und das Ammoniumdiuranat wird dann bei 820 °C mit Wasserstoff zu UO2 reduziert. Beim dritten Verfahren werden UF6-Gas, CO2 und NH3 mit Wasser gemischt, wodurch Ammoniumuranylkarbonat ausgefällt wird. Das Ammoniumuranylkarbonat wird bei 500-600 °C mit Dampf und Wasserstoff zusammengebracht, wodurch UO2 entsteht.
Die Umwandlung von UF6 in UO2 wird häufig in der ersten Stufe einer Brennstoffherstellungsanlage durchgeführt.
- 7.1.8.
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von UF6 in UF4
ANMERKUNG
Die Umwandlung von UF6 in UF4 erfolgt durch Reduzierung mit Wasserstoff.
- 7.1.9.
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von UO2 in UCl4
ANMERKUNG
Die Umwandlung von UO2 in UCl4 kann durch zwei verschiedene Verfahren erfolgen: Beim ersten reagiert UO2 mit Tetrachlorkohlenstoff (CCl4) bei etwa 400 °C. Beim zweiten Verfahren wird UO2 bei etwa 700 °C mit Ruß (CAS 1333-86-4), Kohlenmonoxid und Chlor in UCl4 umgewandelt.
- 7.2.
- Anlagen zur Umwandlung von Plutonium und besonders konstruierte oder hergerichtete Ausrüstung hierfür
EINLEITUNG
Plutoniumumwandlungsanlagen und -systeme eignen sich für eine oder mehrere Umwandlungen von einer Plutoniumverbindung in eine andere, darunter: Umwandlung von Plutoniumnitrat in PuO2, Umwandlung von PuO2 in PuF4 sowie Umwandlung von PuF4 in Plutoniummetall. Plutoniumumwandlungsanlagen sind gewöhnlich mit Wiederaufbereitungsanlagen verbunden, können aber auch mit Plutoniumbrennstoffherstellungsanlagen verbunden sein. Viele der wichtigsten Ausrüstungsteile von Plutoniumumwandlungsanlagen werden auch in der chemischen Verfahrenstechnik verwendet. Ausrüstungsteile bei diesen Verfahren sind beispielsweise Öfen, Drehöfen, Wirbelschichtreaktoren, Flame-Tower-Reaktoren, Flüssigkeitszentrifugen, Destillationskolonnen und Flüssig-Flüssig-Extraktionskolonnen. Heiße Zellen, Handschuhkästen und Fernlenk-Manipulatoren können ebenfalls erforderlich sein. Nur wenige der Teile sind jedoch standardmäßig erhältlich, die meisten dürften nach den Anforderungen und Spezifikationen der Kunden hergestellt werden. Bei der Konstruktion ist den speziellen mit Plutonium verbundenen Strahlen-, Toxizitäts- und Kritikalitätsrisiken besonders Rechnung zu tragen. In manchen Fällen sind wegen der korrosiven Eigenschaften bestimmter verwendeter Chemikalien (z. B. HF) spezielle Konstruktions- und Bauerwägungen erforderlich. Schließlich ist darauf hinzuweisen, dass bei allen Plutoniumumwandlungsverfahren Geräte, die für sich genommen nicht speziell für die Plutoniumumwandlung konstruiert oder hergerichtet sind, zu Systemen zusammengebaut werden können, die dazu bestimmt sind.
- 7.2.1.
- Besonders konstruierte oder hergerichtete Systeme zur Umwandlung von Plutoniumnitrat in Plutoniumoxide
ANMERKUNG
Dieses Verfahren setzt sich aus den folgenden wichtigsten Schritten zusammen: Lagerung und Bearbeitung der Eingangslösung, Ausfällung und Trennung der Feststoffe von Flüssigkeiten, Kalzinierung, Produkthandhabung, Lüftung, Rückstandsentsorgung und Verfahrenskontrolle. Die Verfahrenssysteme werden besonders angepasst, um Kritikalität und Strahlungseinflüsse zu verhindern und Toxizitätsrisiken zu mindern. In den meisten Wiederaufbereitungsanlagen beinhaltet dieses Verfahren außerdem die Umwandlung von Plutoniumnitrat zu Plutoniumdioxid. Andere Verfahren können die Ausfällung von Plutoniumoxalat oder Plutoniumperoxid einschließen.
- 7.2.2.
- Besonders konstruierte oder hergerichtete Systeme für die Plutoniummetallherstellung
ANMERKUNG
Dieses Verfahren umfasst gewöhnlich die Fluorierung von Plutoniumdioxid, normalerweise mit hochkorrosivem Fluorwasserstoff, zur Gewinnung von Plutoniumfluorid, das dann mit hochreinem Kalziummetall reduziert wird. Metallisches Plutonium und eine Kalziumfluoridschlacke bleiben zurück. Die wichtigsten Funktionen sind: Fluorierung (z. B. mit aus Edelmetall hergestellten oder damit beschichteten Geräten), Reduktion von Metall (z. B. mit Keramiktiegeln), Schlackenverarbeitung, Produkthandhabung, Lüftung, Rückstandsentsorgung und Verfahrenskontrolle. Die Verfahrenssysteme werden besonders angepasst, um Kritikalität und Strahlungseinflüsse zu verhindern und Toxizitätsrisiken zu mindern. Andere Verfahren umfassen die Fluorierung von Plutoniumoxalat oder Plutoniumperoxid mit anschließender Reduktion zum Metall.
© Europäische Union 1998-2021
Tipp: Verwenden Sie die Pfeiltasten der Tastatur zur Navigation zwischen Normen.