Anlage 5 VO (EU) 2016/266

Kulturmethoden für Lumbriculus variegatus

Der Glanzwurm Lumbriculus variegatus (MÜLLER), Lumbriculidae, Oligochaeta, lebt in Süßwassersedimenten und wird häufig in Ökotoxizitätsprüfungen verwendet. Er kann unter Laborbedingungen kultiviert werden. Im Folgenden werden die Kulturmethoden beschrieben.

Kulturmethoden

Die Kulturbedingungen für Lumbriculus variegatus sind in Phipps et al. (1993) (1), Brunson et al. (1998) (2), ASTM (2000) (3) und U.S. EPA (2000) (4) eingehend beschrieben und werden nachstehend kurz zusammengefasst. Ein großer Vorteil von L. variegatus ist seine rasche Vermehrung, die dazu führt, dass die Biomasse in laborgezogenen Populationen schnell zunimmt (z. B. (1)(3)(4)(5)). Die Würmer können in großen Aquarien (57-80 l) bei 23 °C mit Hell-/Dunkelphasen von 16 L: 8 D (100 – 1000 lx) in täglich erneuertem natürlichen Wasser (45-50 l pro Aquarium) gezüchtet werden. Das Substrat wird hergestellt, indem ungebleichte braune Papiertücher in Streifen geschnitten und einige Sekunden mit Kulturwasser befeuchtet werden, so dass ein Substrat aus kleinen Papierteilchen entsteht, das unverzüglich in auf dem Boden des Lumbriculus-Zuchtaquariums verteilt werden kann; es kann aber auch in entionisiertem Wasser bis zur späteren Verwendung gefriergelagert werden. Im Aquarium hält sich das frische Substrat für etwa zwei Monate. Jede Wurmkultur wird mit 500-1000 Würmern angesetzt, die unter Wasseraustausch- oder -durchflussbedingungen dreimal wöchentlich mit einer 10 ml-Suspension aus 6 g Forellen-Starterfutter gefüttert werden. Um Bakterien- und Pilzwachstum entgegenzuwirken, werden statische und semistatische Kulturen seltener gefüttert. Unter diesen Bedingungen verdoppelt sich die Zahl der Tiere in der Kultur gewöhnlich in 10-14 Tagen. Alternativ kann Lumbriculus variegatus auch in einem System bestehend aus einer 1-2 cm tiefen Schicht Quarzsand (wie im künstlichen Sediment verwendet) und rekonstituiertem Wasser kultiviert werden. Als Kulturgefäße kommen 12-20 cm hohe Glas- oder Edelstahlbehältnisse in Frage. Der Wasserkörper ist mit einer Pasteur-Pipette, die etwa 2 cm über der Sedimentoberfläche positioniert wird, sanft zu belüften (z. B. 2 Blasen pro Sekunde). Um eine Akkumulation z. B. von Ammoniak zu vermeiden, ist das Überstandswasser über ein Durchflusssystem zu erneuern oder mindestens zweimal wöchentlich manuell auszutauschen. Die Oligochaeten können bei Raumtemperatur mit Hell-/Dunkelphasen von 16 Stunden (Lichtintensität 100-1000 lx) bzw. 8 Stunden gehalten werden. In der semistatischen Kultur (Wasseraustausch einmal pro Woche) werden die Würmer zweimal wöchentlich mit TetraMin gefüttert (z. B. 0,6-0,8 mg pro cm2 Sedimentoberfläche); das Futter kann als Suspension aus 50 mg TetraMin pro ml entionisiertem Wasser verabreicht werden. Lumbriculus variegatus können beispielsweise durch Sieben des Substrats durch ein feinmaschiges Sieb in ein separates Becherglas oder durch Aufnahme (mit einer feuerpolierten Glaspipette mit weiter Öffnung von ca. 5 mm Durchmesser) aus den Kulturen entnommen werden und in ein Becherglas eingesetzt werden. Wenn gleichzeitig auch das Substrat in das Becherglas gegeben wird, dieses würmer- und substrathaltige Glas über Nacht bei kontinuierlichem Wasserdurchfluss ruhen lassen, um das Substrat auszuspülen; die Würmer bleiben auf dem Gefäßboden zurück. Anschließend können die Würmer in neu aufbereitete Kulturgefäße gesetzt oder im Test weiterverwendet werden, wie unter (3) und (4) oder in den folgenden Absätzen beschrieben. Ein Punkt, der bei der Verwendung von L. variegatus in Sedimenttests kritisch zu bewerten ist, betrifft die Reproduktionsform der Art (Architomie oder Morphallaxis, z. B. (6)). Diese geschlechtslose Vermehrung führt zur Entstehung von zwei Fragmenten, die so lange keine Nahrung aufnehmen, bis sich das Kopf- bzw. das Schwanzende regeneriert hat (z. B. (7)(8)), d. h. es kommt nicht zur kontinuierlichen Exposition durch Aufnahme kontaminierten Sediments. Folglich sollte eine Synchronisierung vorgenommen werden, um eine unkontrollierte Reproduktion und Regeneration und sich daraus ergebende stark variierende Testergebnisse auf ein Mindestmaß zu begrenzen. Derartige Variationen können auftreten, wenn einzelne Exemplare fragmentiert haben und über einen bestimmten Zeitraum keine Nahrung aufnehmen und der Prüfchemikalie deshalb weniger stark ausgesetzt sind als andere Exemplare, bei denen es während des Tests nicht zur Fragmentierung kam (9)(10)(11). 10-14 Tage vor Beginn der Exposition sollten die Würmer künstlich zerteilt werden (Synchronisierung). Für die Synchronisierung werden große (adulte) Würmer ausgewählt, die vorzugsweise keine Anzeichen einer kürzlich erfolgten Morphallaxis aufweisen sollten. Diese Würmer können auf einen Glasträger in einen Tropfen Kulturwasser gesetzt und in der Körpermitte mit einem Skalpell zerteilt werden. Dabei ist darauf zu achten, dass die hinteren Enden ähnlich groß sind. Es bleibt abzuwarten, bis die hinteren Enden in einem Kulturgefäß, das dasselbe Substrat wie die Testkultur und rekonstituiertes Wasser enthält, neue Köpfe bilden. Erst dann kann mit der Exposition begonnen werden. Die Kopfteile gelten dann als regeneriert, wenn die synchronisierten Würmer sich im Substrat eingraben. (Ob sich Kopfteile regeneriert haben, kann auch durch Sichtprüfung einer repräsentativen Teilprobe unter einem binokularen Mikroskop festgestellt werden.) Danach kann davon ausgegangen werden, dass sich die Testorganismen in einem physiologisch ähnlichen Zustand befinden. Wenn sich die synchronisierten Würmern dann während des Versuchs durch Morphallaxis reproduzieren, bedeutet dies, dass praktisch alle Tiere dem dotierten Sediment gleichermaßen ausgesetzt waren. Die synchronisierten Würmer sollten einmal gefüttert werden, sobald sie beginnen, sich in das Substrat einzugraben, oder 7 Tage nach dem Zerteilen. Das Fütterungsregime sollte jedoch in etwa das gleiche sein wie bei regulären Kulturen; es kann jedoch sinnvoll sein, dasselbe Futter zu verwenden wie im eigentlichen Test. Die Würmer sollten bei Testtemperatur gehalten werden (d. h. bei 20 ± 2 °C). Nach der Regeneration werden unversehrte, intakte Würmer, die nach einem leichten mechanischen Reiz aktiv schwimmen oder zu kriechen beginnen, für die Prüfung verwendet. Verletzungen und Autotomie sind zu vermeiden, indem zum Hantieren der Würmer beispielsweise Pipetten mit feuerpolierten Kanten oder Edelstahl-Zahnstocher verwendet werden.

Bezugsquellen für Starterkulturen von Lumbriculus variegatus (Anschriften in den USA übernommen aus (4))

EuropaUSA.

ECT Oekotoxikologie GmbH

Böttgerstr. 2-14

D-65439 Flörsheim/Main

Deutschland

Bayer Crop Science AG

Development — Ecotoxicology

Alfred-Nobel-Str. 50

D-40789 Monheim

Deutschland

University of Joensuu

Laboratory of Aquatic Toxicology

Dept. of Biology

Yliopistokatu 7, P.O. Box 111

FIN-80101 Joensuu

Finnland

Dresden University of Technology

Institut für Hydrobiologie

Fakultät für Forst-, Geo- und Hydrowissenschaften

Mommsenstr. 13

D-01062 Dresden

Deutschland

C.N.R.- I.R.S.A.

Italian National Research Council

Water Research Institute

Via Mornera 25

I-20047 Brugherio MI

U.S. Environmental Protection Agency

Mid-Continent Ecological Division

6201 Congdon Boulevard

Duluth, MN 55804

Michigan State University

Department of Fisheries and Wildlife

No. 13 Natural Resources Building

East Lansing, MI 48824-1222

U.S. Environmental Protection Agency

Environmental Monitoring System Laboratory

26 W. Martin Luther Dr.

Cincinnati, OH 45244

Wright State University

Institute for Environmental Quality

Dayton, OH 45435

Columbia Environmental Research Center

U.S. Geological Survey

4200 New Haven Road

Columbia, MO 65201

Great Lakes Environmental Research

Laboratory, NOAA

2205 Commonwealth Boulevard

Ann Arbor, MI 48105-1593

LITERATUR

(1)
Phipps, G.L., Ankley, G.T., Benoit, D.A., und Mattson, V.R. (1993). Use of the aquatic Oligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants. Environ.Toxicol. Chem. 12, 269-279.
(2)
Brunson, E.L., Canfield, T.J., Ingersoll, C.J., und Kemble, N.E. (1998). Assessing the bioaccumulation of contaminants from sediments of the Upper Mississippi river using field-collected oligochaetes and laboratory-exposed Lumbriculus variegatus. Arch.Environ. Contam.Toxicol. 35, 191-201.
(3)
ASTM International (2000). Standard guide for the determination of the bioaccumulation of sediment-associated contaminants by benthic invertebrates, E 1688-00a. In ASTM International 2004 Annual Book of Standards. Volume 11.05. Biological Effects and Environmental Fate; Biotechnology;Pesticides. ASTM International, West Conshohocken, PA.
(4)
U.S. EPA (2000). Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. Second Edition. EPA 600/R-99/064, U.S. Environmental Protection Agency, Duluth, MN, März 2000.
(5)
Kukkonen, J., und Landrum, P.F. (1994). Toxicokinetics and toxicity of sediment-associated Pyrene to Lumbriculus variegatus (Oligochaeta). Environ. Toxicol. Chem. 13, 1457-1468.
(6)
Drewes, C.D., und Fourtner, C.R. (1990). Morphallaxis in an aquatic oligochaete, Lumbriculus variegatus: Reorganisation of escape reflexes in regenerating body fragments. Develop. Biol. 138: 94-103.
(7)
Leppänen, M.T. und Kukkonen, J.V.K. (1998a). Relationship between reproduction, sediment type and feeding activity of Lumbriculus variegatus (Müller): Implications for sediment toxicity testing. Environ. Toxicol. Chem. 17: 2196-2202.
(8)
Leppänen, M.T. und Kukkonen, J.V.K. (1998b). Factors affecting feeding rate, reproduction and growth of an oligochaete Lumbriculus variegatus (Müller). Hydrobiologia 377: 183-194.
(9)
Brust, K., O. Licht, V. Hultsch, D. Jungmann und R. Nagel (2001). Effects of Terbutryn on Aufwuchs and Lumbriculus variegatus in Artificial Indoor Streams. Environ. Toxicol. Chemistry, Bd. 20, 2000-2007.
(10)
Oetken, M., K.-U. Ludwichowski und R. Nagel (2000). Sediment tests with Lumbriculus variegatus and Chironomus riparius and 3,4-dichloroaniline (3,4-DCA) within the scope of EG-AltstoffV. Im Auftrag des Umweltbundesamts Berlin, FKZ 360 12 001, März 2000.
(11)
Leppänen M.T., und Kukkonen, J.V.K. (1998). Relative importance of ingested sediment and porewater as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus, Müller). Environ. Sci. Toxicol. 32, 1503-1508.

© Europäische Union 1998-2021

Tipp: Verwenden Sie die Pfeiltasten der Tastatur zur Navigation zwischen Normen.