Anlage 7 VO (EU) 2014/260
TESTS BEI NIEDRIGEN (μg/l) KONZENTRATIONSBEREICHEN
- 1.
- Zahlreiche chemische Substanzen sind im Wassermilieu, auch in Abwässern, normalerweise in sehr niedrigen Konzentrationen (μg/l) vorhanden. In derart kleinen Mengen sind sie als primäre Vermehrungssubstrate eher nicht geeignet, sondern werden vielmehr als vermehrungsunfähige Sekundärsubstrate zur gleichen Zeit wie diverse natürlich vorkommende kohlenstoffhaltige Substanzen biologisch abgebaut. Das in Anlage 6 beschriebene Modell ist für den Abbau derartiger chemischer Stoffe folglich nicht geeignet. Viele andere Modelle könnten jedoch angewendet werden, und unter den in Abwasserbehandlungssystemen vorherrschenden Bedingungen in vielen Fällen zeitgleich. Zur Klärung dieser Frage ist jedoch noch größerer Forschungsaufwand erforderlich.
- 2.
- Bis dahin kann das im Haupttext beschriebene Verfahren (Kapitel C.10 A) angewendet werden, allerdings nur zur Bestimmung der primären Bioabbaubarkeit mittels angemessen geringer Konzentrationen (< 100 μg/l) und nach einem validierten Analyseverfahren. Die prozentuale biologische Abbaubarkeit kann berechnet werden (siehe Nummer 54 der Prüfmethode), sofern abiotische Prozesse (Adsorption, Flüchtigkeit usw.) berücksichtigt werden. Als Beispiel kann die Studie von Nyholm et al. (1)(2) angeführt werden, bei der die Prüfanlage im 4-Stunden-Takt mit Prüfsubstanz beschickt wurde (Fill-and-Draw-Methode). Für fünf chemische Stoffe, mit denen synthetisches Abwasser im Verhältnis 5 zu 100 μg/l beimpft wurde, wurden Konstanten pseudo-erster Ordnung berichtet. (Für vollständige Bioabbaubarkeit können 14C-markierte Prüfsubstanzen verwendet werden. Da hierfür bislang keine allgemein anerkannten Verfahren vorliegen, geht eine Beschreibung dieser Methode über den Geltungsbereich der vorliegenden Prüfmethode hinaus, wenngleich eine für ISO 14592 (3) vorgeschlagene Methode Leitlinien für die Verwendung 14C-markierter chemischer Stoffe enthält.)
SCAS-Test
- 3.
- Später wurde ein einfacherer Zwei-Phasen-Test vorgeschlagen (4)(5)(6); auf die halbkontinuierliche Belebtschlamm-(SCAS)-Methode folgen kinetische Schnelltests an Proben aus den SCAS-Anlagen. Beim SCAS-System sind (im Gegensatz zur ursprünglichen C.12-Prüfmethode) die Überschussschlamm-Abzugsraten bekannt, und die Anlage wird mit modifiziertem synthetischen Abwasser (OECD) oder Haushaltsabwasser beschickt. Das synthetische Abwasser wurde (wegen veränderlichem pH-Wert und unzulänglicher Schlammsedimentation) durch Zugabe von Phosphatpuffer, Hefeextrakt, Eisen-(III)-Chlorid und Spurenelementsalzen modifiziert, und sein CSB wurde durch Erhöhung der Pepton- und Fleischextraktkonzentration auf etwa 750 mg/l angehoben. Die Anlagen wurden im 24-Stunden-Zyklus betrieben, d. h. Belüftung für 23 Stunden, Überschussschlammabzug, Sedimentation, Entfernung des Überstands (über den Ablauf) mit anschließender Zuführung von synthetischem Abwasser PLUS Prüfsubstanz in Höhe von bis zu 100 μg/l (d. h. in ungefähr derselben Konzentration wie beim Schnelltest). Einmal wöchentlich wurden 10 % des gesamten Schlamms durch frischen Schlamm ersetzt, um eine ausgewogene Mikrobenpopulation zu gewährleisten.
- 4.
- Die anfängliche Konzentration der Prüfsubstanz und die Konzentration am Ende der Belüftungsphase werden gemessen, und der Test wird fortgesetzt, bis eine konstante Abnahme der Prüfsubstanz erreicht ist; dies kann eine Woche bis mehrere Monate dauern.
Schnelltest
- 5.
- Ein Schnelltest (z. B. ein 8-Stunden-Test) wird durchgeführt, um die Konstante der Abbaukinetik (pseudo-)erster Ordnung zu bestimmen, die über die Geschwindigkeit der Zersetzung der Prüfsubstanz in Belebtschlamm aus bekannten, jedoch unterschiedlichen Quellen und Werdegängen Aufschluss gibt. Während eines Akklimatisationsversuchs (Nummern 3, 4) werden insbesondere aus den SCAS-Reaktoren Schlammproben gezogen, und zwar am Ende einer Belüftungsphase, wenn die Konzentration des organischen Substrats gering ist. Zum Vergleich kann Schlamm auch aus einer parallel laufenden SCAS-Anlage entnommen werden, die nicht mit Prüfsubstanz beschickt wurde. Gemische aus Schlamm und Prüfsubstanz, die in zwei oder mehr Konzentrationen zwischen 1 μg/l und 50 μg/l zugeführt wird, werden ohne Zugabe von synthetischem Abwasser oder einem anderen organischen Substrat belüftet. Die Restprüfsubstanz in der Lösung wird während eines Zeitraums von maximal 24 Stunden je nach Abbaubarkeit der chemischen Substanz in regelmäßigen Zeitabständen, z. B. stündlich, bestimmt. Vor den entsprechenden Analysen werden die Proben zentrifugiert.
Berechnungen
- 6.
-
Zur Berechnung der prozentualen Abnahme der Prüfsubstanz werden Daten aus den SCAS-Anlagen verwendet (Nummer 54). Außerdem kann mittels folgender Gleichung eine Konstante der Durchschnittsgeschwindigkeit, K1, (normiert für die Konzentration suspendierter Feststoffe) berechnet werden:
K 1 1 t ln C e C i 1 SS 1 g h Dabei sind:
- t=
- der Belüftungszeitraum (23 Stunden)
- Ce=
- die Konzentration am Ende des Belüftungszeitraums (μg/l)
- Ci=
- die Konzentration zu Beginn des Belüftungszeitraums (μg/l)
- SS=
- die Konzentration von Belebtschlammfeststoffen (g/l)
- 7.
- Beim Schnelltest wird die logarithmische Konzentration der Restprüfsubstanz (in %) gegenüber der Zeit grafisch dargestellt, und die Steigung des ersten Teils (10-50 % Zersetzung) der Kurve entspricht K1, der Konstanten (pseudo-)erster Ordnung. Für die Konzentration der Schlammfeststoffe wird die Konstante durch Division der Steigung durch die Konzentration der Schlammfeststoffe normiert. Das mitgeteilte Ergebnis muss auch Einzelheiten über die anfänglichen Konzentrationen der Prüfsubstanz und suspendierter Feststoffe, über die Schlammverweilzeit, Eintrag und Quelle des Schlamms und über eine (etwaige) Präexposition gegenüber der Prüfsubstanz enthalten.
Variabilität der Ergebnisse
- 8.
- Die Variabilität und andere Aspekte der Bioabbaugeschwindigkeit waren Gegenstand eines kürzlich stattgefundenen SETAC-Workshops (7). Solche (bereits vorliegenden oder geplanten) Studien dürften einen genaueren Einblick in die in Kläranlagen ablaufenden kinetischen Prozesse geben und somit eine bessere Auswertung existierender Daten ermöglichen, aber auch Anregungen für eine zweckdienlichere Auslegung künftiger Prüfmethoden enthalten.
LITERATUR
- 1.
- Nyholm N, Jacobsen BN, Pedersen BM, Poulsen O, Dambourg A and Schultz B (1992). Removal of micropollutants in laboratory activated sludge reactors. Biodegradability. Wat. Res. 26: 339-353.
- (2)
- Jacobsen BN, Nyholm N, Pedersen BM, Poulsen O, and Ostfeldt P (1993). Removal of organic micropollutants in laboratory activated sludge reactors under various operating conditions: Sorption. Wat. Res. 27: 1505-1510.
- (3)
- ISO 14592 (ISO/TC 147/SC5/WG4, N264) (1998). Wasserbeschaffenheit — Bestimmung der aeroben biologischen Abbaubarkeit organischer Verbindungen in geringen Konzentrationen.
- (4)
- Nyholm N, Ingerslev F, Berg UT, Pedersen JP and Frimer-Larsen H (1996). Estimation of kinetic rate constants for biodegradation of chemicals in activated sludge waste water treatment plants using short-term batch experiments and μg/l range spiked concentrations. Chemosphere 33 (5): 851-864.
- (5)
- Berg UT and Nyholm N (1996). Biodegradability simulation Studies in semi-continuous activated sludge reactors with low (μg/l range) and standard (ppm range) chemical concentrations. Chemosphere 33 (4): 711-735.
- (6)
- Danish Environmental Protection Agency. (1996). Activated sludge biodegradability simulation test. Umweltprojekt, Nr. 337. Nyholm, N. Berg, UT. Ingerslev, F. Ministerium für Umwelt und Energie, Kopenhagen.
- (7)
- Biodegradation kinetics: Generation and use of data for regulatory decision making (1997). Workshop in Port Sunlight, VK. Verlag: Hales, SG. Feitjel, T. King, H. Fox, K. and Verstraete, W. 4.-6. September 1996. SETAC- Europe, Brüssel.
© Europäische Union 1998-2021
Tipp: Verwenden Sie die Pfeiltasten der Tastatur zur Navigation zwischen Normen.